• 1. Seim HB, Withrow SJ. Pathophysiology and diagnosis of caudal cervical spondylomyelopathy with emphasis on the Doberman Pinscher. J Am Anim Hosp Assoc 1982;18:241251.

    • Search Google Scholar
    • Export Citation
  • 2. da Costa RC. Cervical spondylomyelopathy (wobbler syndrome) in dogs. Vet Clin North Am Small Anim Pract 2010;40:881913.

  • 3. da Costa RC, Parent JM, Holmberg DL, et al. Outcome of medical and surgical treatment in dogs with cervical spondylomyelopathy: 104 cases (1988–2004). J Am Vet Med Assoc 2008;233:12841290.

    • Search Google Scholar
    • Export Citation
  • 4. Steffen F, Voss K, Morgan JP. Distraction-fusion for caudal cervical spondylomyelopathy using an intervertebral cage and locking plates in 14 dogs. Vet Surg 2011;40:743752.

    • Search Google Scholar
    • Export Citation
  • 5. da Costa RC, Parent JM. One-year clinical and magnetic resonance imaging follow-up of Doberman Pinschers with cervical spondylomyelopathy treated medically or surgically. J Am Vet Med Assoc 2007;231:243250.

    • Search Google Scholar
    • Export Citation
  • 6. Jeffery ND, McKee WM. Surgery for disc-associated wobbler syndrome in the dog—an examination of the controversy. J Small Anim Pract 2001;42:574581.

    • Search Google Scholar
    • Export Citation
  • 7. Adamo PF. Cervical arthroplasty in two dogs with disk-associated cervical spondylomyelopathy. J Am Vet Med Assoc 2011;239:808817.

  • 8. Adamo PF, Forterre F. Will there be a role for disc prostheses in small animals? In: Fingeroth JM, Thomas WB, eds. Advances in intervertebral disc disease in dogs and cats. Ames, Iowa: Willey-Blackwell, 2014;294309.

    • Search Google Scholar
    • Export Citation
  • 9. Ramos RM, da Costa RC, Oliveira ALA, et al. Effects of flexion and extension on the diameter of the caudal cervical vertebral canal in dogs. Vet Surg 2015;44:459466.

    • Search Google Scholar
    • Export Citation
  • 10. Wang Y, Battié MC, Videman T. A morphological study of lumbar vertebral endplates: radiographic, visual and digital measurements. Eur Spine J 2012;21:23162323.

    • Search Google Scholar
    • Export Citation
  • 11. Bergknut N, Grinwis G, Pickee E, et al. Reliability of macroscopic grading of intervertebral disk degeneration in dogs by use of the Thompson system and comparison with low-field magnetic resonance imaging findings. Am J Vet Res 2011;72:899904.

    • Search Google Scholar
    • Export Citation
  • 12. da Costa RC, Parent JM, Partlow G, et al. Morphologic and morphometric magnetic resonance imaging features of Doberman Pinschers with and without clinical signs of cervical spondylomyelopathy. Am J Vet Res 2006;67:16011612.

    • Search Google Scholar
    • Export Citation
  • 13. De Decker S, Gielen IMVL, Duchateau L, et al. Intervertebral disk width in dogs with and without clinical signs of disk associated cervical spondylomyelopathy. BMC Vet Res 2012;8:126132.

    • Search Google Scholar
    • Export Citation
  • 14. Wilke HJ, Geppert J, Kienle A. Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur Spine J 2011;20:18591868.

    • Search Google Scholar
    • Export Citation
  • 15. Sheng S-R, Wang X-Y, Xu H-Z, et al. Anatomy of large animal spines and its comparison to the human spine: a systematic review. Eur Spine J 2010;19:4656.

    • Search Google Scholar
    • Export Citation
  • 16. Sheng S-R, Xu H-Z, Wang Y-L, et al. Comparison of cervical spine anatomy in calves, pigs and humans. PLoS One 2016;11:e0148610.

  • 17. Zhao S, Hao D, Jiang Y, et al. Morphological studies of cartilage endplates in subaxial cervical region. Eur Spine J 2016;25:22182222.

    • Search Google Scholar
    • Export Citation
  • 18. Eijkelkamp MF, Van Donkelaar CC, Veldhuizen AG, et al. Requirements for an artificial intervertebral disc. Int J Artif Organs 2001;24:311321.

    • Search Google Scholar
    • Export Citation
  • 19. Lakshmanan P, Purushothaman B, Dvorak V, et al. Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 2012;21(suppl 2):S160S164.

    • Search Google Scholar
    • Export Citation
  • 20. van der Houwen EB, Baron P, Veldhuizen AG, et al. Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 2010;38:3340.

    • Search Google Scholar
    • Export Citation
  • 21. Tang R, Gungor C, Sesek RF, et al. Morphometry of the lower lumbar intervertebral discs and endplates: comparative analyses of new MRI data with previous findings. Eur Spine J 2016;25:41164131.

    • Search Google Scholar
    • Export Citation
  • 22. Gilad I, Nissan M. Sagittal radiographic measurements of the cervical and lumbar vertebrae in normal adults. Br J Radiol 1985;58:10311034.

    • Search Google Scholar
    • Export Citation
  • 23. Thaler M, Hartmann S, Gstöttner M, et al. Footprint mismatch in total cervical disc arthroplasty. Eur Spine J 2013;22:759765.

  • 24. Dong L, Tan M-S, Yan Q-H, et al. Footprint mismatch of cervical disc prostheses with Chinese cervical anatomic dimensions. Chin Med J (Engl) 2015;128:197202.

    • Search Google Scholar
    • Export Citation
  • 25. Wu T-K, Liu H, Ning N, et al. Cervical disc arthroplasty for the treatment of adjacent segment disease: a systematic review of clinical evidence. Clin Neurol Neurosurg 2017;162:111.

    • Search Google Scholar
    • Export Citation
  • 26. Chen M-W, Yang S-W, Lee M-C. Changes in lumbar disc angles of Chinese subjects from upright to flexion. Spine 1994;19:14901494.

  • 27. Tibrewal SB, Pearcy MJ. Lumbar intervertebral disc heights in normal subjects and patients with disc herniation. Spine 1985;10:452454.

    • Search Google Scholar
    • Export Citation
  • 28. Johnson JA, da Costa RC, Bhattacharya S, et al. Kinematic motion patterns of the cranial and caudal canine cervical spine. Vet Surg 2011;40:720727.

    • Search Google Scholar
    • Export Citation
  • 29. Hofstetter M, Gédet P, Doherr M, et al. Biomechanical analysis of the three-dimensional motion pattern of the canine cervical spine segment C4–C5. Vet Surg 2009;38:4958.

    • Search Google Scholar
    • Export Citation

Advertisement

Ex vivo computed tomography evaluation of loading position on morphometry of the caudal cervical intervertebral disk spaces of dogs

Sebastian C. Knell Dr Med Vet1, Lucas A. Smolders DVM, PhD2, Thomas Steffen MD3,4, and Antonio Pozzi DVM, MS5
View More View Less
  • 1 Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
  • | 2 Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
  • | 3 Musculoskeletal Research Unit, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
  • | 4 Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University, Montreal, QC H3G 1A4, Canada.
  • | 5 Clinic for Small Animal Surgery, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.

Abstract

OBJECTIVE To provide an objective, quantitative morphometric description of the caudal cervical intervertebral disk (IVD) spaces of dogs.

SAMPLE Vertebral specimens consisting of C4 through C7 from 5 medium-sized dogs.

PROCEDURES CT images were obtained with the specimens positioned in neutral, flexion, extension, and lateral bending positions. Size and shape of the cranial and caudal end plates, angle between the end plates (IVD wedge angle), and craniocaudal distance (IVD width) between end plates for the 4 loading positions were measured and compared for the 3 segments (C4-5, C5-6, and C6-7).

RESULTS End plate size and shape, IVD wedge angle, and IVD width were not significantly different among the 3 segments. Caudal cervical end plates were consistently larger than cranial cervical end plates. The IVD wedge angle ranged from −4.8° to 15.2°. Flexion induced a reduction in IVD width in the ventral portion of the IVD, whereas extension induced a decrease in width in the dorsal portion of the IVD. Central IVD width remained unchanged among the loading positions.

CONCLUSIONS AND CLINICAL RELEVANCE Unique morphometric and dynamic characteristics of the caudal cervical IVD space of dogs were detected. These findings may help investigators when designing IVD prostheses for dogs with cervical spondylomyelopathy.

Contributor Notes

Address correspondence to Dr. Knell (sknell@vetclinics.uzh.ch).