Evaluation of the geometric accuracy of computed tomography and microcomputed tomography of the articular surface of the distal portion of the radius of cats

Caroline E. Webster 1Edward P. Fitts Department of Industrial and Systems Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695.

Search for other papers by Caroline E. Webster in
Current site
Google Scholar
PubMed
Close
 PhD
,
Denis J. Marcellin-Little 3Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Denis J. Marcellin-Little in
Current site
Google Scholar
PubMed
Close
 DEDV
,
Erin M. Koballa 3Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Erin M. Koballa in
Current site
Google Scholar
PubMed
Close
 DVM
,
Jonathan W. Stallrich 2Department of Statistics, College of Sciences, North Carolina State University, Raleigh, NC 27695.

Search for other papers by Jonathan W. Stallrich in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Ola L. A. Harrysson 1Edward P. Fitts Department of Industrial and Systems Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695.

Search for other papers by Ola L. A. Harrysson in
Current site
Google Scholar
PubMed
Close
 PhD

Abstract

OBJECTIVE

To evaluate accuracy of articular surfaces determined by use of 2 perpendicular CT orientations, micro-CT, and laser scanning.

SAMPLE

23 cat cadavers.

PROCEDURES

Images of antebrachia were obtained by use of CT (voxel size, 0.6 mm) in longitudinal orientation (CTLO images) and transverse orientation (CTTO images) and by use of micro-CT (voxel size, 0.024 mm) in a longitudinal orientation. Images were reconstructed. Craniocaudal and mediolateral length, radius of curvature, and deviation of the articular surface of the distal portion of the radius of 3-D renderings for CTLO, CTTO, and micro-CT images were compared with results of 3-D renderings acquired with a laser scanner (resolution, 0.025 mm).

RESULTS

Measurement of CTLO and CTTO images overestimated craniocaudal and mediolateral length of the articular surface by 4% to 10%. Measurement of micro-CT images underestimated craniocaudal and mediolateral length by 1%. Measurement of CTLO and CTTO images underestimated mediolateral radius of curvature by 15% and overestimated craniocaudal radius of curvature by > 100%; use of micro-CT images underestimated them by 3% and 5%, respectively. Mean ± SD surface deviation was 0.26 ± 0.09 mm for CTLO images, 0.30 ± 0.28 mm for CTTO images, and 0.04 ± 0.02 mm for micro-CT images.

CONCLUSIONS AND CLINICAL RELEVANCE

Articular surface models derived from CT images had dimensional errors that approximately matched the voxel size. Thus, CT cannot be used to plan conforming arthroplasties in small joints and could lack precision when used to plan the correction of a limb deformity or repair of a fracture.

Abstract

OBJECTIVE

To evaluate accuracy of articular surfaces determined by use of 2 perpendicular CT orientations, micro-CT, and laser scanning.

SAMPLE

23 cat cadavers.

PROCEDURES

Images of antebrachia were obtained by use of CT (voxel size, 0.6 mm) in longitudinal orientation (CTLO images) and transverse orientation (CTTO images) and by use of micro-CT (voxel size, 0.024 mm) in a longitudinal orientation. Images were reconstructed. Craniocaudal and mediolateral length, radius of curvature, and deviation of the articular surface of the distal portion of the radius of 3-D renderings for CTLO, CTTO, and micro-CT images were compared with results of 3-D renderings acquired with a laser scanner (resolution, 0.025 mm).

RESULTS

Measurement of CTLO and CTTO images overestimated craniocaudal and mediolateral length of the articular surface by 4% to 10%. Measurement of micro-CT images underestimated craniocaudal and mediolateral length by 1%. Measurement of CTLO and CTTO images underestimated mediolateral radius of curvature by 15% and overestimated craniocaudal radius of curvature by > 100%; use of micro-CT images underestimated them by 3% and 5%, respectively. Mean ± SD surface deviation was 0.26 ± 0.09 mm for CTLO images, 0.30 ± 0.28 mm for CTTO images, and 0.04 ± 0.02 mm for micro-CT images.

CONCLUSIONS AND CLINICAL RELEVANCE

Articular surface models derived from CT images had dimensional errors that approximately matched the voxel size. Thus, CT cannot be used to plan conforming arthroplasties in small joints and could lack precision when used to plan the correction of a limb deformity or repair of a fracture.

All Time Past Year Past 30 Days
Abstract Views 106 0 0
Full Text Views 1798 1282 106
PDF Downloads 324 128 7
Advertisement