• 1. Thomas WB. Idiopathic epilepsy in dogs and cats. Vet Clin North Am Small Anim Pract 2010;40:161179.

  • 2. Jaggy A, Faissler D, Gaillard C, et al. Genetic aspects of idiopathic epilepsy in Labrador Retrievers. J Small Anim Pract 1998;39:275280.

    • Search Google Scholar
    • Export Citation
  • 3. Kathmann I, Jaggy A, Busato A, et al. Clinical and genetic investigations of idiopathic epilepsy in the Bernese Mountain Dog. J Small Anim Pract 1999;40:319325.

    • Search Google Scholar
    • Export Citation
  • 4. Löscher W. Animal models of intractable epilepsy. Prog Neurobiol 1997;53:239258.

  • 5. Bellumori TP, Famula TR, Bannasch DL, et al. Prevalence of inherited disorders among mixed-breed and purebred dogs: 27,254 cases (1995–2010). J Am Vet Med Assoc 2013;242:15491555.

    • Search Google Scholar
    • Export Citation
  • 6. Kearsley-Fleet L, O'Neill DG, Volk HA, et al. Prevalence and risk factors for canine epilepsy of unknown origin in the UK. Vet Rec 2013;172:338.

    • Search Google Scholar
    • Export Citation
  • 7. Chandler K. Canine epilepsy: what can we learn from human seizure disorders? Vet J 2006;172:207217.

  • 8. Buckmaster PS, Smith MO, Buckmaster CL, et al. Absence of temporal lobe epilepsy pathology in dogs with medically intractable epilepsy. J Vet Intern Med 2002;16:9599.

    • Search Google Scholar
    • Export Citation
  • 9. Wu RH, Bruening R, Noachtar S, et al. MR measurement of regional relative cerebral blood volume in epilepsy. J Magn Reson Imaging 1999;9:435440.

    • Search Google Scholar
    • Export Citation
  • 10. Pendse N, Wissmeyer M, Altrichter S, et al. Interictal arterial spin-labeling MRI perfusion in intractable epilepsy. J Neuroradiol 2010;37:6063.

    • Search Google Scholar
    • Export Citation
  • 11. Wolf RL, Alsop DC, Levy-Reis I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. Am J Neuroradiol 2001;22:13341341.

    • Search Google Scholar
    • Export Citation
  • 12. Spencer SS, Schramm J, Wyler A, et al. Multiple subpial transection for intractable partial epilepsy: an international meta-analysis. Epilepsia 2002;43:141145.

    • Search Google Scholar
    • Export Citation
  • 13. Loddenkemper T, Pan A, Neme S, et al. Deep brain stimulation in epilepsy. J Clin Neurophysiol 2001;18:514532.

  • 14. Andrade DM, Zumsteg D, Hamani C, et al. Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology 2006;66:15711573.

    • Search Google Scholar
    • Export Citation
  • 15. Boon P, Vonck K, De Herdt V, et al. Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia 2007;48:15511560.

    • Search Google Scholar
    • Export Citation
  • 16. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 2007;3:383393.

    • Search Google Scholar
    • Export Citation
  • 17. Weishaupt D, Köchli VD, Marincek B. Wie funktioniert MRI?: eine einführung in physik und funktionsweise der magnetresonanzbildgebung. 6th ed. Heidelberg, Germany: Springer, 2009;7778, 133–135.

    • Search Google Scholar
    • Export Citation
  • 18. Westbrook C, Kaut Roth C, Talbot J. MRI in practice. 4th ed. Chichester, West Sussex, England: Wiley-Blackwell, 2011;396, 400–403.

  • 19. Liu HL, Kochunov P, Hou J, et al. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med 2001;45:431435.

    • Search Google Scholar
    • Export Citation
  • 20. Szabo K, Poepel A, Pohlmann-Eden B, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain 2005;128:13691376.

    • Search Google Scholar
    • Export Citation
  • 21. Toledo M, Munuera J, Salas-Puig X, et al. Localisation value of ictal arterial spin-labelled sequences in partial seizures. Epileptic Disord 2011;13:336339.

    • Search Google Scholar
    • Export Citation
  • 22. Matsuura K, Maeda M, Okamoto K, et al. Usefulness of arterial spin-labeling images in periictal state diagnosis of epilepsy. J Neurol Sci 2015;359:424429.

    • Search Google Scholar
    • Export Citation
  • 23. Leonhardt G, de Greiff A, Weber J, et al. Brain perfusion following single seizures. Epilepsia 2005;46:19431949.

  • 24. Martlé V, Peremans K, Raedt R, et al. Regional brain perfusion changes during standard and microburst vagus nerve stimulation in dogs. Epilepsy Res 2014;108:616622.

    • Search Google Scholar
    • Export Citation
  • 25. Hartmann A, Driesen A, Lautenschläger IE, et al. Quantitative analysis of brain perfusion in healthy dogs by means of magnetic resonance imaging. Am J Vet Res 2016;77:12271235.

    • Search Google Scholar
    • Export Citation
  • 26. Giesel FL, Wüstenberg T, Bongers A, et al. MR-based methods of the functional imaging of the central nervous system. Rofo 2005;177:714730.

    • Search Google Scholar
    • Export Citation
  • 27. Barbier EL, Lamalle L, Décorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001;13:496520.

  • 28. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954;6:731744.

    • Search Google Scholar
    • Export Citation
  • 29. Fraley C, Raftery A. MCLUST version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation. Seattle: University of Washington, 2012.

    • Search Google Scholar
    • Export Citation
  • 30. Berendt M, Gram L. Epilepsy and seizure classification in 63 dogs: a reappraisal of veterinary epilepsy terminology. J Vet Intern Med 1999;13:1420.

    • Search Google Scholar
    • Export Citation
  • 31. Jaggy A, Bernardini M. Idiopathic epilepsy in 125 dogs: a long-term study. Clinical and electroencephalographic findings. J Small Anim Pract 1998;39:2329.

    • Search Google Scholar
    • Export Citation
  • 32. Podell M, Fenner WR, Powers JD. Seizure classification in dogs from a nonreferral-based population. J Am Vet Med Assoc 1995;206:17211728.

    • Search Google Scholar
    • Export Citation
  • 33. Peremans K, Audenaert K, Blanckaert P, et al. Effects of aging on brain perfusion and serotonin-2A receptor binding in the normal canine brain measured with single photon emission tomography. Prog Neuropsychopharmacol Biol Psychiatry 2002;26:13931404.

    • Search Google Scholar
    • Export Citation
  • 34. Hansen TD, Warner DS, Todd MM, et al. Distribution of cerebral blood flow during halothane versus isoflurane anesthesia in rats. Anesthesiology 1988;69:332337.

    • Search Google Scholar
    • Export Citation
  • 35. Matta BF, Heath KJ, Tipping K, et al. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 1999;91:677680.

    • Search Google Scholar
    • Export Citation
  • 36. Farber NE, Harkin CP, Niedfeldt J, et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology 1997;87:11911198.

    • Search Google Scholar
    • Export Citation
  • 37. Rohrer M, Bauer H, Mintorovitch J, et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005;40:715724.

    • Search Google Scholar
    • Export Citation
  • 38. Belliveau JW, Rosen BR, Kantor HL, et al. Functional cerebral imaging by susceptibility contrast NMR. Magn Reson Med 1990;14:538546.

  • 39. Knutsson L, Ståhlberg F, Wirestam R. Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities. MAGMA 2010;23:121.

    • Search Google Scholar
    • Export Citation
  • 40. Weber MA, Risse F, Giesel FL, et al. Perfusion measurement using the T2* contrast media dynamics in neurooncology. Physical basics and clinical applications. Radiologe 2005;45:618632.

    • Search Google Scholar
    • Export Citation
  • 41. Sendrowski K, Sobaniec W. Hippocampus, hippocampal sclerosis and epilepsy. Pharmacol Rep 2013;65:555565.

  • 42. Jackson G, Van Paesschen W. Hippocampal sclerosis in the MR era. Epilepsia 2002;43:410.

  • 43. Stefan H, Bauer J, Feistel H, et al. Regional cerebral blood flow during focal seizures of temporal and frontocentral onset. Ann Neurol 1990;27:162166.

    • Search Google Scholar
    • Export Citation
  • 44. Fatzer R, Gandini G, Jaggy A, et al. Necrosis of hippocampus and piriform lobe in 38 domestic cats with seizures: a retrospective study on clinical and pathologic findings. J Vet Intern Med 2000;14:100104.

    • Search Google Scholar
    • Export Citation
  • 45. Schmied O, Scharf G, Hilbe M, et al. Magnetic resonance imaging of feline hippocampal necrosis. Vet Radiol Ultrasound 2008;49:343349.

  • 46. Kuwabara T, Hasegawa D, Kobayashi M, et al. Clinical magnetic resonance volumetry of the hippocampus in 58 epileptic dogs. Vet Radiol Ultrasound 2010;51:485490.

    • Search Google Scholar
    • Export Citation
  • 47. Pákozdy Á, Leschnik M, Sarchahi AA, et al. Clinical comparison of primary versus secondary epilepsy in 125 cats. J Feline Med Surg 2010;12:910916.

    • Search Google Scholar
    • Export Citation
  • 48. Rempp KA, Brix G, Wenz F, et al. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994;193:637641.

    • Search Google Scholar
    • Export Citation
  • 49. Schreiber WG, Gückel F, Stritzke P, et al. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998;18:11431156.

    • Search Google Scholar
    • Export Citation
  • 50. Calamante F, Thomas DL, Pell GS, et al. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999;19:701735.

    • Search Google Scholar
    • Export Citation
  • 51. Böhme G. Nervensystem, Sinnesorgane und Endokrine Drüsen. In: Nickel R, Schummerl A, Seiferle E, eds. Lehrbuch der Anatomie der Haustiere Band. Band IV. 4th ed. Stuttgart, Germany: Georg Thieme Verlag, 2004;62188.

    • Search Google Scholar
    • Export Citation
  • 52. Jokinen TS, Haaparanta-Solin M, Viitmaa R, et al. FDG-PET In healthy and epileptic Lagotto Romagnolo dogs and changes in brain glucose uptake with age. Vet Radiol Ultrasound 2014;55:331341.

    • Search Google Scholar
    • Export Citation
  • 53. Martlé V, Peremans K, Audenaert K, et al. Regional brain perfusion in epileptic dogs evaluated by technetium-99m-ethyl cysteinate dimer SPECT. Vet Radiol Ultrasound 2009;50:655659.

    • Search Google Scholar
    • Export Citation
  • 54. West GB, Brown JH, Enquist BJ. General model for the origin of allometric scaling laws in biology. Science 1997;276:122126.

  • 55. Azhim A, Akioka K, Akutagawa M, et al. Effect of gender on blood flow velocities and blood pressure: role of body weight and height, in Proceedings. 29th Annu Int Conf IEEE Eng Med Biol Soc 2007;967970.

    • Search Google Scholar
    • Export Citation
  • 56. Kayar SR, Hoppeler H, Jones JH, et al. Capillary blood transit time in muscles in relation to body size and aerobic capacity. J Exp Biol 1994;194:6981.

    • Search Google Scholar
    • Export Citation
  • 57. Packer RM, Berendt M, Bhatti S, et al. Inter-observer agreement of canine and feline paroxysmal event semiology and classification by veterinary neurology specialists and non-specialists. BMC Vet Res 2015;11:39.

    • Search Google Scholar
    • Export Citation

Advertisement

Quantitative analysis of brain perfusion parameters in dogs with idiopathic epilepsy by use of magnetic resonance imaging

Antje Hartmann Dr Med Vet1, Clea von Klopmann Dr Med Vet2, Ines E. Lautenschläger Dr Med Vet3, Volkher B. Scholz Dr rer nat4, and Martin J. Schmidt PD, Dr Med Vet Habil5
View More View Less
  • 1 Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
  • | 2 Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
  • | 3 Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
  • | 4 Institute for Theoretical Physics, ETH Zurich, 8092 Zurich, Switzerland.
  • | 5 Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig-University Giessen, 35392 Giessen, Germany.

Abstract

OBJECTIVE To quantitatively analyze brain perfusion parameters in dogs with idiopathic epilepsy (IE) by use of MRI and to compare those findings with brain perfusion parameters for healthy dogs.

ANIMALS 12 client-owned dogs with IE.

PROCEDURES For each dog, standard MRI and perfusion-weighted imaging (before and after injection of gadoteric acid contrast medium) sequences of the brain were obtained during the interictal period by means of the same protocol used in a comparable study of healthy dogs. Time of contrast medium arrival, time to peak contrast enhancement, mean contrast transit time, and cerebral blood flow were calculated for the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and temporal cerebral cortex. Parameters for each structure were compared between dogs with IE and healthy dogs.

RESULTS Dogs with IE had a significantly greater mean time of contrast arrival and lower mean cerebral blood flow than healthy dogs. Differences in cerebral blood flow between dogs with IE and healthy dogs were most pronounced in the piriform lobe, thalamus, and temporal cerebral cortex. The mean contrast transit time did not differ between dogs with IE and healthy dogs.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, compared with healthy dogs, dogs with IE have decreased blood perfusion of the brain. Findings of this study can be used as a basis for further research into functional changes within the brains of epileptic dogs during the interictal phase.

Abstract

OBJECTIVE To quantitatively analyze brain perfusion parameters in dogs with idiopathic epilepsy (IE) by use of MRI and to compare those findings with brain perfusion parameters for healthy dogs.

ANIMALS 12 client-owned dogs with IE.

PROCEDURES For each dog, standard MRI and perfusion-weighted imaging (before and after injection of gadoteric acid contrast medium) sequences of the brain were obtained during the interictal period by means of the same protocol used in a comparable study of healthy dogs. Time of contrast medium arrival, time to peak contrast enhancement, mean contrast transit time, and cerebral blood flow were calculated for the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and temporal cerebral cortex. Parameters for each structure were compared between dogs with IE and healthy dogs.

RESULTS Dogs with IE had a significantly greater mean time of contrast arrival and lower mean cerebral blood flow than healthy dogs. Differences in cerebral blood flow between dogs with IE and healthy dogs were most pronounced in the piriform lobe, thalamus, and temporal cerebral cortex. The mean contrast transit time did not differ between dogs with IE and healthy dogs.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, compared with healthy dogs, dogs with IE have decreased blood perfusion of the brain. Findings of this study can be used as a basis for further research into functional changes within the brains of epileptic dogs during the interictal phase.

Supplementary Materials

    • Supplementary Figure S1 (PDF 1553 kb)

Contributor Notes

Drs. Hartmann and von Klopmann's present address is Tierklinik Hofheim, Katharina-Kemmler-Str.7, 65719 Hofheim, Germany.

Dr. Lautenschläger's present address is Animal Hospital, Clinic for Diagnostic Imaging, University Zürich, Winterthurerstr 260, 8057 Zürich, Switzerland.

Address correspondence to Dr. Hartmann (drantjehartmann@gmail.com).