1. Goy-Thollot I, Besse S, Garnier F, et al. Simplified methods for estimation of plasma clearance of iohexol in dogs and cats. J Vet Intern Med 2006;20:52–56.
2. Goy-Thollot I, Chafotte C, Besse S, et al. Iohexol plasma clearance in healthy dogs and cats. Vet Radiol Ultrasound 2006;47:168–173.
3. Finco DR, Braselton WE, Cooper TA. Relationship between plasma iohexol clearance and urinary exogenous creatinine clearance in dogs. J Vet Intern Med 2001;15:368–373.
4. Brown SA, Finco DR, Boudinot FD, et al. Evaluation of a single injection method, using iohexol, for estimating glomerular filtration rate in cats and dogs. Am J Vet Res 1996;57:105–110.
5. Gleadhill A, Michell AR. Evaluation of iohexol as a marker for the clinical measurement of glomerular filtration rate in dogs. Res Vet Sci 1996;60:117–121.
6. Miyamoto K. Use of plasma clearance of iohexol for estimating glomerular filtration rate in cats. Am J Vet Res 2001;62:572–575.
7. Miyamoto K. Clinical application of plasma clearance of iohexol on feline patients. J Feline Med Surg 2001;3:143–147.
8. Alexander K, Del Castillo JE, Ybarra N, et al. Single-slice dynamic computed tomographic determination of glomerular filtration rate by use of Patlak plot analysis in anesthetized pigs. Am J Vet Res 2007;68:297–304.
9. O'Dell-Anderson KJ, Twardock R, Grimm JB, et al. Determination of glomerular filtration rate in dogs using contrast-enhanced computed tomography. Vet Radiol Ultrasound 2006;47:127–135.
10. Von Hendy-Willson VE, Pressler BM. An overview of glomerular filtration rate testing in dogs and cats. Vet J 2011;188:156–165.
11. Wisner E, Zwingenberger A. Abdomen. In: Atlas of small animal CT and MRI. Ames, Iowa: Wiley Blackwell, 2015;489–625.
12. Alexander K, Dunn M, Carmel EN, et al. Clinical application of Patlak plot CT-GFR in animals with upper urinary tract disease. Vet Radiol Ultrasound 2010;51:421–427.
13. Alexander K, Ybarra N, del Castillo JE, et al. Determination of glomerular filtration rate in anesthetized pigs by use of three-phase whole-kidney computed tomography and Patlak plot analysis. Am J Vet Res 2008;69:1455–1462.
14. Schmidt DM, Scrivani PV, Dykes NL, et al. Comparison of glomerular filtration rate determined by use of single-slice dynamic computed tomography and scintigraphy in cats. Am J Vet Res 2012;73:463–469.
15. Chang J, Kim S, Jung J, et al. Evaluation of the effects of thiopental, propofol, and etomidate on glomerular filtration rate measured by the use of dynamic computed tomography in dogs. Am J Vet Res 2011;72:146–151.
16. Chang J, Kim S, Jung J, et al. Assessment of glomerular filtration rate with dynamic computed tomography in normal Beagle dogs. J Vet Sci 2011;12:393–399.
17. Alexander K, Authier S, Del Castillo JE, et al. Patlak plot analysis CT-GFR for the determination of renal function: comparison of normal dogs with autologous kidney transplant dogs. Contrast Media Mol Imaging 2010;5:133–139.
18. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010;256:32–61.
19. Makara M, Dennler M, Kühn K, et al. Effect of contrast medium injection duration on peak enhancement and time to peak enhancement of canine pulmonary arteries. Vet Radiol Ultrasound 2011;52:605–610.
20. Blaser A, Dennler M, Mosing M, et al. Effects of contrast medium injection technique on attenuation values of adrenal glands in healthy dogs during contrast-enhanced computed tomography. Am J Vet Res 2016;77:144–150.
21. Goic JB, Koenigshof AM, McGuire LD, et al. A retrospective evaluation of contrast-induced kidney injury in dogs (2006–2012). J Vet Emerg Crit Care (San Antonio) 2016;26:713–719.
22. Azzalini L, Spagnoli V, Ly HQ. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol 2016;32:247–255.
23. Cernigliaro JG, Haley WE, Adolphson DP, et al. Contrast-induced nephropathy in outpatients with preexisting renal impairment: a comparison between intravenous iohexol and iodixanol. Clin Imaging 2016;40:902–906.
24. Heyman SN, Rosen S, Khamaisi M, et al. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol 2010;45:188–195.
25. Solomon R. Contrast media: are there differences in nephrotoxicity among contrast media. Biomed Re Int 2014;2014:934947.
26. Lefebvre HP. Normal kidney function: from small to extra-large, in Proceedings. World Small Animal Veterinary Association World Congress 2010;1–4.
27. Daniel GB, Mitchel S, Mawby D, et al. Renal nuclear medicine: a review. Vet Radiol Ultrasound 1999;40:572–587.
28. Hackstein N, Bauer J, Hauck E, et al. Measuring single-kidney glomerular filtration rate on single-detector helical CT using a two-point Patlak plot technique in patients with increased interstitial space. AJR Am J Roentgenol 2003;181:147–156.
29. Duke-Novakovski T, de Vries M, Seymour C. Chapter 9. In: Seymour C, Duke T, eds. BSAVA manual of canine and feline anaesthesia and analgesia. 2nd ed. Ames, Iowa: Wiley, 2010;91.
Advertisement
OBJECTIVE To compare values of CT-derived glomerular filtration rate (GFR) determined by 3 contrast-medium injection protocols and 4 measurement techniques in healthy Beagles.
ANIMALS 9 healthy Beagles (mean ± SD weight, 13.2 ± 1.6 kg).
PROCEDURES Each dog underwent 3 iohexol-injection protocols (700 mg of iodine/kg administered at a constant rate over 20 seconds, 700 mg of iodine/kg administered following an exponentially decelerated injection over 20 seconds, and 350 mg of iodine/kg at a constant rate over 10 seconds) during dynamic, whole renal-volume CT in randomized order with an interval of ≥ 7 days between experiments. Values of GFR determined from Patlak plots derived by use of 4 measurement techniques (standard transverse section, optimized transverse section, dorsal reconstruction, and volume calculation techniques) were compared.
RESULTS The measurement technique influenced the mean ± SD GFR results (standard transverse section technique, 2.49 ± 0.54 mL/kg/min; optimized transverse section technique, 2.72 ± 0.52 mL/kg/min; dorsal reconstruction technique, 3.00 ± 0.60 mL/kg/min, and volume calculation technique, 2.48 ± 0.51 mL/kg/min). The lower iodine dose resulted in a significantly higher GFR value (3.00 ± 0.65 mL/kg/min), compared with that achieved with either higher dose administration (constant rate injection, 2.54 ± 0.45 mL/kg/min and exponentially decelerated injection, 2.47 ± 0.48 mL/kg/min).
CONCLUSIONS AND CLINICAL RELEVANCE In healthy Beagles, the CT-derived GFR measurements obtained after injection of a full dose of contrast medium were reduced, compared with measurements obtained after injection of a half dose. This finding is important with regard to potential nephrotoxicosis in dogs with impaired renal function and for GFR measurement with CT-contrast medium protocols.
Mr. Wallimann's present address is Gross-und Kleintierpraxis, Hofstrasse 8, 6374 Buochs, Switzerland.
Mr. Santner's present address is IngCH – Engineers Shape our Future, Klosbachstrasse 107, 8032 Zurich, Switzerland. (Krämer).