• 1. Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond) 1990;4:389424.

  • 2. Samuelson DA. Ophthalmic anatomy. In: Gelatt K, Gilger BC, Kern T, eds. Veterinary ophthalmology. 5th ed. Ames, Iowa: Wiley-Blackwell, 2013;39170.

    • Search Google Scholar
    • Export Citation
  • 3. Laing RA, Sandstrom MM, Leibowitz HM. Clinical specular microscopy. I. Optical principles. Arch Ophthalmol 1979;97:17141719.

  • 4. Abib FC, Barreto J Jr. Behavior of corneal endothelial density over a lifetime. J Cataract Refract Surg 2001;27:15741578.

  • 5. Stapleton S, Peiffer RL. Specular microscopic observations of the clinically normal canine corneal endothelium. Am J Vet Res 1979;40:18031804.

    • Search Google Scholar
    • Export Citation
  • 6. Sailstad DM, Peiffer RL. Specular microscopic observations of the corneal endothelium in the normal rabbit. Lab Anim 1981;15:393395.

  • 7. Morita H, Shimomura K, Sakuma Y. Specular microscopy of corneal endothelial cells in cynomolgus monkeys. J Vet Med Sci 1994;56:763764.

  • 8. Morita H. Specular microscopy of corneal endothelial cells in rabbits. J Vet Med Sci 1995;57:273277.

  • 9. Morita H, Shimomura K. Specular microscopy of the corneal endothelial cells in common marmosets. J Vet Med Sci 1996;58:277279.

  • 10. Andrew SE, Ramsey DT, Hauptman JG, et al. Density of corneal endothelial cells and corneal thickness in eyes of euthanatized horses. Am J Vet Res 2001;62:479482.

    • Search Google Scholar
    • Export Citation
  • 11. Andrew SE, Willis AM, Anderson DE. Density of corneal endothelial cells, corneal thickness, and corneal diameters in normal eyes of llamas and alpacas. Am J Vet Res 2002;63:326329.

    • Search Google Scholar
    • Export Citation
  • 12. Franzen AA, Pigatto JAT, Abib FC, et al. Use of specular microscopy to determine corneal endothelial cell morphology and morphometry in enucleated cat eyes. Vet Ophthalmol 2010;13:222226.

    • Search Google Scholar
    • Export Citation
  • 13. Coyo N, Peña MT, Costa D, et al. Effects of age and breed on corneal thickness, density, and morphology of corneal endothelial cells in enucleated sheep eyes. Vet Ophthalmol 2016;19:367372.

    • Search Google Scholar
    • Export Citation
  • 14. Laule A, Cable MK, Hoffman CE, et al. Endothelial cell population changes of human cornea during life. Arch Ophthalmol 1978;96:20312035.

    • Search Google Scholar
    • Export Citation
  • 15. Gwin RM, Lerner I, Warren JK, et al. Decrease in canine corneal endothelial cell density and increase in corneal thickness as functions of age. Invest Ophthalmol Vis Sci 1982;22:267271.

    • Search Google Scholar
    • Export Citation
  • 16. Bahn CF, Glassman RM, MacCallum DK, et al. Postnatal development of corneal endothelium. Invest Ophthalmol Vis Sci 1986;27:4451.

  • 17. Von Sallmann L, Caravaggio LL, Grimes P. Studies on the corneal endothelium of the rabbit. I. Cell division and growth. Am J Ophthalmol 1961;51:955969.

    • Search Google Scholar
    • Export Citation
  • 18. Martola EL, Baum JL. Central and peripheral corneal thickness: a clinical study. Arch Ophthalmol 1968;79:2830.

  • 19. Henriksson JT, Bron AJ, Bergmanson JPG. An explanation for the central to peripheral thickness variation in the mouse cornea. Clin Experiment Ophthalmol 2012;40:174181.

    • Search Google Scholar
    • Export Citation
  • 20. Gilger BC, Whitley RD, McLaughlin SA, et al. Canine corneal thickness measured by ultrasonic pachymetry. Am J Vet Res 1991;52:15701572.

    • Search Google Scholar
    • Export Citation
  • 21. Gilger BC, Wright JC, Whitley RD, et al. Corneal thickness measured by ultrasonic pachymetry in cats. Am J Vet Res 1993;54:228230.

  • 22. Chan T, Payor S, Holden BA. Corneal thickness profiles in rabbits using an ultrasonic pachometer. Invest Ophthalmol Vis Sci 1983;24:14081410.

    • Search Google Scholar
    • Export Citation
  • 23. Bayer J. Anatomie des auges. In. Tierärztliche Augenheilkunde. Vienna, Austria: Wilhelm Braumüller, 1914;282.

  • 24. Cafaro TA, Ortiz SG, Madonado C, et al. The cornea of guinea pig: structural and functional studies. Vet Ophthalmol 2009;12:234241.

  • 25. Inomata T, Mashaghi A, Hong J, et al. Scaling and maintenance of corneal thickness during aging. PLoS One 2017;12:e0185694.

  • 26. Herbig LE, Eule JC. Central corneal thickness measurements and ultrasonographic study of the growing equine eye. Vet Ophthalmol 2015;18:462471.

    • Search Google Scholar
    • Export Citation
  • 27. Bapodra P, Bouts T, Mahoney P, et al. Ultrasonographic anatomy of the Asian elephant (Elephas maximus) eye. J Zoo Wildl Med 2010;41:409417.

    • Search Google Scholar
    • Export Citation
  • 28. Lynch GL, Hoffman A, Blocker T. Central corneal thickness in koi fish: effects of age, sex, body length, and corneal diameter. Vet Ophthalmol 2007;10:211215.

    • Search Google Scholar
    • Export Citation
  • 29. Ribeiro AP, Silva ML, Rosa JP, et al. Ultrasonographic and echobiometric findings in the eyes of Saanen goats of different ages. Vet Ophthalmol 2009;12:313317.

    • Search Google Scholar
    • Export Citation
  • 30. LoPinto AJ, Pirie CG, Bedenice D, et al. Corneal thickness of eyes of healthy goats, sheep, and alpacas manually measured by use of a portable spectral-domain optical coherence tomography device. Am J Vet Res 2017;78:8084.

    • Search Google Scholar
    • Export Citation
  • 31. Pigatto JAT, Laus JL, Santos JM, et al. Corneal endothelium of the Magellanic penguin (Spheniscus magellanicus) by scanning electron microscopy. J Zoo Wildl Med 2005;36:702705.

    • Search Google Scholar
    • Export Citation
  • 32. Pigatto JAT, Franzen AA, Pereira FQ, et al. Scanning electron microscopy of the corneal endothelium of ostrich. Cienc Rural 2009;39:926929.

    • Search Google Scholar
    • Export Citation
  • 33. Tamayo-Arango LJ, Baraldi-Artoni SM, Laus JL, et al. Ultrastructural morphology and morphometry of the normal corneal endothelium of adult crossbred pig. Cienc Rural 2009;39:117122.

    • Search Google Scholar
    • Export Citation
  • 34. Reichard M, Hovakimyan M, Wree A, et al. Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals. Curr Eye Res 2010;35:10721080.

    • Search Google Scholar
    • Export Citation
  • 35. Amann J, Holley GP, Lee SB, et al. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol 2003;135:584590.

    • Search Google Scholar
    • Export Citation
  • 36. Yee RW, Matsuda M, Schultz RO, et al. Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res 1985;4:671678.

    • Search Google Scholar
    • Export Citation
  • 37. Blackwell WL, Gravenstein N, Kaufman HE. Comparison of central corneal endothelial cell numbers with peripheral areas. Am J Ophthalmol 1977;84:473476.

    • Search Google Scholar
    • Export Citation
  • 38. La Rosa FA, Gross RL, Orengo-Nania S. Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations. Arch Ophthalmol 2001;119:2327.

    • Search Google Scholar
    • Export Citation
  • 39. Yee RW, Edelhauser HF, Stern ME. Specular microscopy of vertebrate corneal endothelium: a comparative study. Exp Eye Res 1987;44:703714.

    • Search Google Scholar
    • Export Citation
  • 40. Doughty MJ. Prevalence of “non-hexagonal” cells in the corneal endothelium of young Caucasian adults, and their inter-relationships. Ophthalmic Physiol Opt 1998;18:415422.

    • Search Google Scholar
    • Export Citation
  • 41. Pigatto JAT, Cerva C, Freire CD, et al. Morphological analysis of the corneal endothelium in eyes of dogs using specular microscopy. Pesqui Vet Bras 2008;28:427430.

    • Search Google Scholar
    • Export Citation
  • 42. Blatt HL, Rao GN, Aquavella JV. Endothelial cell density in relation to morphology. Invest Ophthalmol Vis Sci 1979;18:856859.

  • 43. Murphy C, Alvarado J, Juster R, et al. Prenatal and postnatal cellularity of the human corneal endothelium. A quantitative histologic study. Invest Ophthalmol Vis Sci 1984;25:312322.

    • Search Google Scholar
    • Export Citation
  • 44. Bourne WM, Nelson LR, Hodge DO. Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci 1997;38:779782.

    • Search Google Scholar
    • Export Citation
  • 45. Padilla MDB, Sibayan SAB, Gonzales CSA. Corneal endothelial cell density and morphology in normal Filipino eyes. Cornea 2004;23:129135.

    • Search Google Scholar
    • Export Citation
  • 46. Sheng H, Bullimore MA. Factors affecting corneal endothelial morphology. Cornea 2007;26:520525.

  • 47. Galgauskas S, Norvydaite D, Krasauskaitè D, et al. Age-related changes in corneal thickness and endothelial characteristics. Clin Interv Aging 2013;8:14451450.

    • Search Google Scholar
    • Export Citation
  • 48. Moodie KL, Hashizume N, Houston DL, et al. Postnatal development of corneal curvature and thickness in the cat. Vet Ophthalmol 2001;4:267272.

    • Search Google Scholar
    • Export Citation
  • 49. Haider KM, Mickler C, Oliver D, et al. Age and racial variation in central corneal thickness of preschool and school-aged children. J Pediatr Ophthalmol Strabismus 2008;45:227233.

    • Search Google Scholar
    • Export Citation
  • 50. Faragher RG, Mulholland B, Tuft SJ, et al. Aging and the cornea. Br J Ophthalmol 1997;81:814817.

Advertisement

Corneal thickness, endothelial cell density, and morphological and morphometric features of corneal endothelial cells in goats

Natalia Coyo DVM, PhD1, Marta Leiva DVM, PhD2,3, Daniel Costa DVM, PhD4, José Rios MS5, and Teresa Peña DVM, PhD6,7
View More View Less
  • 1 Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellatarra, Barcelona, Spain.
  • | 2 Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellatarra, Barcelona, Spain.
  • | 3 Servei d'Oftalmologia Veterinària, Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, 08193 Bellatarra, Barcelona, Spain.
  • | 4 Servei d'Oftalmologia Veterinària, Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, 08193 Bellatarra, Barcelona, Spain.
  • | 5 Biostatistics and Data Management Core Facility, IDIBAPS–Clinical Hospital of Barcelona, Carrer del Rosselló, 149, 08036 Barcelona, Spain.
  • | 6 Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellatarra, Barcelona, Spain.
  • | 7 Servei d'Oftalmologia Veterinària, Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, 08193 Bellatarra, Barcelona, Spain.

Abstract

OBJECTIVE To determine corneal thickness (CT), endothelial cell density (ECD), and morphological and morphometric features of caprine eyes and to assess effects of aging on these variables.

SAMPLE 27 healthy eyes of 19 Murciano-Granadina goats.

PROCEDURES Goats were classified into 2 age groups (kids, 14 months old [14 eyes]; and adults, 7 to 10 years old [13 eyes]). The ECD and CT were calculated in the central cornea and 4 peripheral quadrants. Mean cell area (MCA), pleomorphism (percentage of hexagonal cells), and polymegathism were evaluated in the central cornea.

RESULTS Median values for kids were determined for ECD (3,831 cells/mm2; inter-quartile [25th to 75th percentile] range [IQR], 3,669 to 4,011 cells/mm2), CT (608 μm; IQR, 573 to 655 μm), MCA (255 μm2; IQR, 243 to 272 μm2), pleomorphism (80.53%; IQR, 78.83% to 83.30%), and polymegathism (19; IQR, 18 to 22). Median values for adults were determined for ECD (2,101 cells/mm2; IQR, 1,966 to 2,251 cells/mm2), CT (706 μm; IQR, 670 to 730 μm), MCA (466 μm2; IQR, 425 to 507 μm2), pleomorphism (67.80%; IQR, 65.50% to 70.00%), and polymegathism (21; IQR, 15 to 26). Values differed significantly between the 2 groups for all variables, except polymegathism. For both groups, the dorsal and temporal quadrants were the thickest and thinnest, respectively. Ventral ECD was the lowest for both groups.

CONCLUSIONS AND CLINICAL RELEVANCE ECD decreased with age, whereas MCA, pleomorphism, and CT increased. Moreover, differences among regions of the cornea indicated that the central cornea should not be considered as representative of the entire cornea.

Contributor Notes

Address correspondence to Dr. Leiva (marta.leiva@uab.cat).