• 1. Penna G, Adorini L. 1α, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 2000;164:24052411.

    • Search Google Scholar
    • Export Citation
  • 2. Szymczak I, Pawliczak R. The active metabolite of vitamin D3 as a potential immunomodulator. Scand J Immunol 2016;83:8391.

  • 3. Parker VJ, Rudinsky AJ, Chew DJ. Vitamin D metabolism in canine and feline medicine. J Am Vet Med Assoc 2017;250:12591269.

  • 4. Yang CY, Leung PSC, Adamopoulos IE, et al. The implication of vitamin D and autoimmunity: a comprehensive review. Clin Rev Allergy Immunol 2013;45:217226.

    • Search Google Scholar
    • Export Citation
  • 5. Lin Z, Li W. The roles of vitamin D and its analogs in inflammatory diseases. Curr Top Med Chem 2016;16:12421261.

  • 6. Tiosano D, Wildbaum G, Gepstein V, et al. The role of vitamin D receptor in innate and adaptive immunity: a study in hereditary vitamin D-resistant rickets patients. J Clin Endocrinol Metab 2013;98:16851693.

    • Search Google Scholar
    • Export Citation
  • 7. Tokuda N, Levy RB. 1,25-dihydroxyvitamin D3 stimulates phagocytosis but suppresses HLA-DR and CD13 antigen expression in human mononuclear phagocytes. Proc Soc Exp Biol Med 1996;211:244250.

    • Search Google Scholar
    • Export Citation
  • 8. Chandra G, Selvaraj P, Jawahar MS, et al. Effect of vitamin D3 on phagocytic potential of macrophages with live mycobacterium tuberculosis and lymphoproliferative response in pulmonary tuberculosis. J Clin Immunol 2004;24:249257.

    • Search Google Scholar
    • Export Citation
  • 9. Motlagh BM, Ahangaran NA, Froushani SMA. Calcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions. Iran J Basic Med Sci 2015;18:672676.

    • Search Google Scholar
    • Export Citation
  • 10. Verma R, Jung JH, Kim JY. 1,25-dihydroxyvitamin D3 up-regulates TLR10 while down-regulating TLR2, 4, and 5 in human monocyte THP-1. J Steroid Biochem Mol Biol 2014;141:16.

    • Search Google Scholar
    • Export Citation
  • 11. Wang H, Zhang Q, Chai Y, et al. 1,25(OH)2D3 downregulates the toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J Endocrinol Invest 2015;38:10831091.

    • Search Google Scholar
    • Export Citation
  • 12. Fitch N, Becker AB, HayGlass KT. Vitamin D [1,25(OH)2D3] differentially regulates human innate cytokine responses to bacterial versus vital pattern recognition receptor stimuli. J Immunol 2016;196:29652972.

    • Search Google Scholar
    • Export Citation
  • 13. Villaggio B, Soldano S, Cutolo M. 1,25-dihydroxyvitamin D3 downregulates aromatase expression and inflammatory cytokines in human macrophages. Clin Exp Rheumatol 2012;30:934938.

    • Search Google Scholar
    • Export Citation
  • 14. Harishankar M, Afsal K, Banurekha VV, et al. 1,25-Dihydroxy vitamin D3 downregulates pro-inflammatory cytokine response in pulmonary tuberculosis. Int Immunopharmacol 2014;23:148152.

    • Search Google Scholar
    • Export Citation
  • 15. Neve A, Corrado A, Cantatore FP. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clin Exp Med 2014;14:275283.

    • Search Google Scholar
    • Export Citation
  • 16. Grubczak K, Lipinska D, Eljaszewicz A, et al. Vitamin D3 treatment decreases frequencies of CD16-positive and TNF-α-secreting monocytes in asthmatic patients. Int Arch Allergy Immunol 2015;166:170176.

    • Search Google Scholar
    • Export Citation
  • 17. Bartels LE, Jorgensen SP, Agnholt J, et al. 1,25-dihydroxyvitamin D3 and dexamethasone increase interleukin-10 production in CD4+ T cells from patients with Crohn's disease. Int Immunopharmacol 2007;7:17551764.

    • Search Google Scholar
    • Export Citation
  • 18. Munger KL, Levin LI, Hollis BW, et al. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006;296:28322838.

  • 19. Rosser F, Brehm JM, Forno E, et al. Proximity to a major road, vitamin D insufficiency, and severe asthma exacerbations in Puerto Rican children. Am J Respir Crit Care Med 2014;190:11901193.

    • Search Google Scholar
    • Export Citation
  • 20. Staples JA, Ponsonby AL, Lim LL, et al. Ecologic analysis of some immune-related disorders, including type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence. Environ Health Perspect 2003;111:518523.

    • Search Google Scholar
    • Export Citation
  • 21. Ruiz-Irastorza G, Egurbide MV, Olivares N, et al. Vitamin D deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology 2008;47:920923.

    • Search Google Scholar
    • Export Citation
  • 22. Mellanby RJ, Mellor PJ, Roulois A, et al. Hypocalcaemia associated with low serum vitamin D metabolite concentrations in two dogs with protein-losing enteropathies. J Small Anim Pract 2005;46:345351.

    • Search Google Scholar
    • Export Citation
  • 23. Gow AG, Else R, Evans H, et al. Hypovitaminosis D in dogs with inflammatory bowel disease and hypoalbuminaemia. J Small Anim Pract 2011;52:411418.

    • Search Google Scholar
    • Export Citation
  • 24. Titmarsh H, Gow AG, Kilpatrick S, et al. Association of vitamin D status and clinical outcome in dogs with a chronic enteropathy. J Vet Intern Med 2015;29:14731478.

    • Search Google Scholar
    • Export Citation
  • 25. Titmarsh HF, Gow AG, Kilpatrick S, et al. Low vitamin D status is associated with systemic and gastrointestinal inflammation in dogs with a chronic enteropathy. PLoS One 2015;10:e0137377.

    • Search Google Scholar
    • Export Citation
  • 26. Gerber B, Hässig M, Reusch CE. Serum concentrations of 1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol in clinically normal dogs and dogs with acute and chronic renal failure. Am J Vet Res 2003;64:11611166.

    • Search Google Scholar
    • Export Citation
  • 27. Kraus MS, Rassnick KM, Wakshlag JJ, et al. Relation of vitamin D status to congestive heart failure and cardiovascular events in dogs. J Vet Intern Med 2014;28:109115.

    • Search Google Scholar
    • Export Citation
  • 28. Osuga T, Nakamura K, Morita T, et al. Vitamin D status in different stages of disease severity in dogs with chronic valvular heart disease. J Vet Intern Med 2015;29:15181523.

    • Search Google Scholar
    • Export Citation
  • 29. Holowaychuk MK, Birkenheuer AJ, Li J, et al. Hypocalcemia and hypovitaminosis D in dogs with induced endotoxemia. J Vet Intern Med 2012;26:244251.

    • Search Google Scholar
    • Export Citation
  • 30. Jaffey JA, Backus RC, McDaniel KM, et al. Serum vitamin D concentrations in hospitalized critically ill dogs. PLoS One 2018;13:e0194062.

  • 31. Deitschel SJ, Kerl ME, Chang CH, et al. Age-associated changes to pathogen-associated molecular pattern-induced inflammatory mediator production in dogs. J Vet Emerg Crit Care (San Antonio) 2010;20:494502.

    • Search Google Scholar
    • Export Citation
  • 32. Fowler BL, Axiak SM, DeClue AE. Blunted pathogen-associated molecular pattern motif induced TNF, IL-6 and IL10 production from whole blood in dogs with lymphoma. Vet Immunol Immunopathol 2011;144:167171.

    • Search Google Scholar
    • Export Citation
  • 33. Karlsson I, Hagman R, Johannisson A, et al. Cytokines as immunologic markers for systemic inflammation in dogs with pyometra. Reprod Domest Anim 2012;47(suppl 6):337341.

    • Search Google Scholar
    • Export Citation
  • 34. LeBlanc CJ, LeBlanc AK, Jones MM, et al. Evaluation of peripheral blood neutrophil function in tumor-bearing dogs. Vet Clin Pathol 2010;39:157163.

    • Search Google Scholar
    • Export Citation
  • 35. Declue AE, Yu DH, Prochnow S, et al. Effects of opioids on phagocytic function, oxidative burst capacity, cytokine production and apoptosis in canine leukocytes. Vet J 2014;200:270275.

    • Search Google Scholar
    • Export Citation
  • 36. Zhang Y, Axiak-Bechtel S, Friedman Cowan C, et al. Evaluation of immunomodulatory effect of recombinant human granulocyte-macrophage colony-stimulating factor on polymorphonuclear cell from dogs with cancer in vitro. Vet Comp Oncol 2017;15:968979.

    • Search Google Scholar
    • Export Citation
  • 37. Axiak-Bechtel S, Fowler B, Yu DH, et al. Chemotherapy and remission status do not alter pre-existing innate immune dysfunction in dogs with lymphoma. Res Vet Sci 2014;97:230237.

    • Search Google Scholar
    • Export Citation
  • 38. Panichi V, De Pietro S, Andreini B, et al. Calcitriol modulates in vivo and in vitro cytokine production: a role for intracel-3lular calcium. Kidney Int 1998;54:14631469.

    • Search Google Scholar
    • Export Citation
  • 39. Rausch-Fan X, Leutmezer F, Willheim M, et al. Regulation of cytokine production in human peripheral blood mononuclear cells and allergen-specific Th cell clones by 1α,25-dihydroxyvitamin D3. Int Arch Allergy Immunol 2002;128:3341.

    • Search Google Scholar
    • Export Citation
  • 40. Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 downregulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006;36:361370.

    • Search Google Scholar
    • Export Citation
  • 41. Quraishi SA, De Pascale G, Needleman JS, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled trial. Crit Care Med 2015;43:19281937.

    • Search Google Scholar
    • Export Citation
  • 42. Karin M, Lin A. NF-κB at the crossroads of life and death. Nat Immunol 2002;3:221227.

  • 43. Bao BY, Yao J, Lee YF. 1α, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis 2006;27:18831893.

    • Search Google Scholar
    • Export Citation
  • 44. Stio M, Martinesi M, Bruni S, et al. The vitamin D analogue TX 527 blocks NF-κB activation in peripheral blood mononuclear cells of patients with Crohn's disease. J Steroid Biochem Mol Biol 2007;103:5160.

    • Search Google Scholar
    • Export Citation
  • 45. Peng L, Malloy PJ, Feldman D. Identification of a functional vitamin D response element in the human insulin-like growth factor binding protein-3 promoter. Mol Endocrinol 2004;18:11091119.

    • Search Google Scholar
    • Export Citation
  • 46. Crescioli C, Ferruzzi P, Caporali A, et al. Inhibition of prostate cell growth by BXL-628, a calcitriol analogue selected for a phase II clinical trial in patients with benign prostate hyperplasia. Eur J Endocrinol 2004;150:591603.

    • Search Google Scholar
    • Export Citation
  • 47. He CS, Fraser WD, Gleeson M. Influence of vitamin D metabolites on plasma cytokine concentrations in endurance sport athletes and on multiantigen stimulated cytokine production by whole blood and peripheral blood mononuclear cell cultures. ISRN Nutr 2014;2014:820524.

    • Search Google Scholar
    • Export Citation
  • 48. Morris A, Selvaraj RK. In vitro 25-hydroxycholecalciferol treatment of lipopolysaccharide-stimulated chicken macrophages increases nitric oxide production and mRNA of interleukin-1β and 10. Vet Immunol Immunopathol 2014;161:265270.

    • Search Google Scholar
    • Export Citation
  • 49. Xu QA, Li ZF, Zhang P, et al. Effects of 1,25-dihydroxyvitamin D3 on macrophage cytokine secretion stimulated by Porphyromonas gingivalis. Jpn J Infect Dis 2016;69:482487.

    • Search Google Scholar
    • Export Citation
  • 50. Niino M, Fukazawa T, Miyazaki Y, et al. Suppression of IL-10 production by calcitriol in patients with multiple sclerosis. J Neuroimmunol 2014;270:8694.

    • Search Google Scholar
    • Export Citation
  • 51. Barrera D, Noyola-Martinez N, Avila E, et al. Calcitriol inhibits interleukin-10 expression in cultured human trophoblasts under normal and inflammatory conditions. Cytokine 2012;57:316321.

    • Search Google Scholar
    • Export Citation
  • 52. Ferreira GB, van Etten F, Verstuyf A, et al. 1,25-dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab Res Rev 2011;27:933941.

    • Search Google Scholar
    • Export Citation
  • 53. Nouari W, Ysmail-Dahlouk L, Aribi M. Vitamin D3 enhances bactericidal activity of macrophages against Pseudomonas aeruginosa. Int Immunopharmacol 2016;30:94101.

    • Search Google Scholar
    • Export Citation
  • 54. Vieira-Neto A, Lima IRP, Lopes F Jr, et al. Use of calcitriol to maintain postpartum blood calcium and improve immune function in dairy cows. J Dairy Sci 2017;100:58055823.

    • Search Google Scholar
    • Export Citation
  • 55. Rassnick KM, Muindi JR, Johnson CS, et al. Oral bioavailability of DN101, a concentrated formulation of calcitriol, in tumor-bearing dogs. Cancer Chemother Pharmacol 2011;67:165171.

    • Search Google Scholar
    • Export Citation

Advertisement

Effects of calcitriol on phagocytic function, toll-like receptor 4 expression, and cytokine production of canine leukocytes

Jared A. Jaffey DVM, MS1, Juliana Amorim DVM2, and Amy E. DeClue DVM, MS3
View More View Less
  • 1 Comparative Internal Medicine Laboratory, Veterinary Health Center, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.
  • | 2 Comparative Internal Medicine Laboratory, Veterinary Health Center, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.
  • | 3 Comparative Internal Medicine Laboratory, Veterinary Health Center, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Abstract

OBJECTIVE To determine the in vitro effects of calcitriol on indicators of immune system function in blood samples collected from healthy dogs.

SAMPLE Blood samples from 8 healthy adult dogs.

PROCEDURES Blood samples were incubated with calcitriol (10−7M) or control substance for 24 hours. Afterward, lipopolysaccharide (LPS)-, lipoteichoic acid (LTA)-, and N-acetylmuramyl-l-alanyl-d-isoglutamine hydrate (MDP)-stimulated leukocyte production of tumor necrosis factor (TNF) and interleukin-10 (IL10) were measured with a canine-specific multiplex assay. Phagocytosis of opsonized Escherichia coli and leukocyte expression of constitutive toll-like receptor 4 (TLR4) were evaluated via flow cytometry. Blood samples from 3 dogs were used to create a concentration-response curve to evaluate whether the observed cytokine modulation was concentration dependent.

RESULTS Incubation of canine blood samples with calcitriol resulted in significant decreases in LPS-, LTA-, and MDP-stimulated leukocyte production of TNF but not IL10. Blunting of TNF production was concentration dependent. Leukocyte calcitriol exposure had no significant effect on phagocytosis and TLR4 expression.

CONCLUSIONS AND CLINICAL RELEVANCE These data indicated that calcitriol induced an anti-inflammatory shift in canine leukocytes exposed to LPS, LTA, and MDP in vitro, without altering phagocytosis or TLR4 expression. Thus, calcitriol could represent a novel candidate immunomodulatory treatment for dogs.

Contributor Notes

Address correspondence to Dr. DeClue (decluea@missouri.edu).