• 1. Bavelaar FJ, Beynen AC. Atherosclerosis in parrots: a review. Vet Q 2004; 26: 5060.

  • 2. Krautwald-Junghanns ME, Braun S, Pees M, et al. Research on the anatomy and pathology of the psittacine heart. J Avian Med Surg 2004; 18: 211.

    • Search Google Scholar
    • Export Citation
  • 3. Oglesbee BL, Oglesbee MJ. Results of postmortem examination of psittacine birds with cardiac disease: 26 cases (1991–1995). J Am Vet Med Assoc 1998; 212: 17371742.

    • Search Google Scholar
    • Export Citation
  • 4. Schmidt RE, Hubbard GB, Fletcher KC. Systematic survey of lesions from animals in a zoologic collection. I. Central nervous system. J Zoo Anim Med 1986; 17: 811.

    • Search Google Scholar
    • Export Citation
  • 5. St. Leger J. Avian atherosclerosis. In: Fowler ME, Miller RE, eds. Zoo and wild animal medicine, current therapy. 6th ed. St Louis: Saunders, 2007;200205.

    • Search Google Scholar
    • Export Citation
  • 6. Bohorquez F, Stout C. Aortic atherosclerosis in exotic avians. Exp Mol Pathol 1972; 46: 1119.

  • 7. Pilny AA. Retrospective of atherosclerosis in psittacine birds: clinical and histopathologic findings in 31 cases, in Proceedings. Assoc Avian Vet Conf 2004;349351.

    • Search Google Scholar
    • Export Citation
  • 8. Garner MM, Raymond JT. A retrospective study of atherosclerosis in birds, in Proceedings. Assoc Avian Vet Conf 2003;5966.

  • 9. Fricke C, Schmidt V, Cramer K, et al. Characterization of atherosclerosis by histochemical and immunohistochemical methods in African grey parrots (Psittacus erithacus) and Amazon parrots (Amazona spp.). Avian Dis 2009; 53: 466472.

    • Search Google Scholar
    • Export Citation
  • 10. Beaufrère H, Ammersbach M, Reavill DR, et al. Prevalence of and risk factors associated with atherosclerosis in psittacine birds. J Am Vet Med Assoc 2013; 242: 16961704.

    • Search Google Scholar
    • Export Citation
  • 11. Beaufrère H, Nevarez JG, Holder K, et al. Characterization and classification of psittacine atherosclerotic lesions by histopathology, digital image analysis, transmission and scanning electron microscopy. Avian Pathol 2011; 40: 531544.

    • Search Google Scholar
    • Export Citation
  • 12. Beaufrère H, Pariaut R, Rodriguez D, et al. Avian vascular imaging: a review. J Avian Med Surg 2010; 24: 174184.

  • 13. Beaufrère H, Rodriguez D, Pariaut R, et al. Estimation of intrathoracic arterial diameter by means of computed tomographic angiography in Hispaniolan Amazon parrots. Am J Vet Res 2011; 72: 210218.

    • Search Google Scholar
    • Export Citation
  • 14. Lee YL, Yu PH, Chen CL, et al. Determination of the enhancement effect and diameters of the major arteries of African grey parrots using a dual-head power injector for computed tomographic angiography. Taiwan Vet J 2015; 41: 165175.

    • Search Google Scholar
    • Export Citation
  • 15. Hirai N, Imakita S, Tanaka R, et al. Multidetector CT angiography using a dual-head power injector and bolus tracking for the diagnosis of aortic aneurysms at reduced contrast material dosage. Acad Radiol 2006; 13: 694700.

    • Search Google Scholar
    • Export Citation
  • 16. Kim DJ, Kim TH, Kim SJ, et al. Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 2008; 246: 110115.

    • Search Google Scholar
    • Export Citation
  • 17. Hopper KD, Mosher TJ, Kasales CJ, et al. Thoracic spiral CT: delivery of contrast material pushed with injectable saline solution in a power injector. Radiology 1997; 205: 269271.

    • Search Google Scholar
    • Export Citation
  • 18. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010; 256: 3261.

    • Search Google Scholar
    • Export Citation
  • 19. Johnson-Delaney CA. Practical avian cardiology. Exotic DVM 2006; 8: 7885.

  • 20. Strunk A, Wilson GH. Avian cardiology. Vet Clin North Am Exot Anim Pract 2003; 6: 128.

  • 21. Nap AMP, Lumeij TJ, Stokhof AA. Electrocardiogram of the African grey (Psittacus erithacus) and Amazon (Amazona spp.) parrot. Avian Pathol 1992; 21: 4553.

    • Search Google Scholar
    • Export Citation
  • 22. Pees M, Straub J, Krautwald-Junghanns ME. Echocardiographic examinations of 60 African grey parrots and 30 other psittacine birds. Vet Rec 2004; 155: 7376.

    • Search Google Scholar
    • Export Citation
  • 23. Capitelli R, Crosta L. Overview of psittacine blood analysis and comparative retrospective study of clinical diagnosis, hematology and blood chemistry in selected psittacine species. Vet Clin North Am Exot Anim Pract 2013; 16: 71120.

    • Search Google Scholar
    • Export Citation
  • 24. Pilny AA, Quesenberry KE, Bartick-Sedrish TE, et al. Evaluation of Chlamydophila psittaci infection and other risk factors for atherosclerosis in pet psittacine birds. J Am Vet Med Assoc 2012; 240: 14741480.

    • Search Google Scholar
    • Export Citation
  • 25. Ritchie BW, Harrison GJ, Harrison LR. Cardiology. In: Lumeij JT, Ritchie BW, eds. Avian medicine: principles and application. Lake Worth, Fla: Wingers Publishing Inc, 1994;695722.

    • Search Google Scholar
    • Export Citation
  • 26. Dodge JT Jr, Brown BG, Bolson EL, et al. Lumen diameter of normal human coronary arteries influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation 1992; 86: 232246.

    • Search Google Scholar
    • Export Citation
  • 27. Johnson PT, Pannu HK, Fishman EK. IV contrast infusion for coronary artery CT angiography: literature review and results of a nationwide survey. AJR Am J Roentgenol 2009;192:W214W221.

    • Search Google Scholar
    • Export Citation
  • 28. Lumsden JH, Mullen K. On establishing reference values. Can J Comp Med 1978; 42: 293301.

  • 29. Beaufrère H, Pariaut R, Rodriguez D, et al. Comparison of transcoelomic, contrast transcoelomic, and transesophageal echocardiography in anesthetized red-tailed hawks (Buteo jamaicensis). Am J Vet Res 2012; 73: 15601568.

    • Search Google Scholar
    • Export Citation
  • 30. Fleischmann D. Contrast medium administration in computed tomographic angiography. In: Rubin GD, Rofsky NM, eds. CT and MR angiography: comprehensive vascular assessment. Philadelphia: Lippincott Williams & Wilkins, 2009:129153.

    • Search Google Scholar
    • Export Citation
  • 31. Slama M, Susic D, Varagic J, et al. Echocardiographic measurement of cardiac output in rats. Am J Physiol Heart Circ Physiol 2003; 284: H691H697.

    • Search Google Scholar
    • Export Citation
  • 32. Butler PJ, West NH, Jones DR. Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind-tunnel. J Exp Biol 1977; 71: 726.

    • Search Google Scholar
    • Export Citation
  • 33. Hof RP, Hof A, Sturm RP. The Doppler method for measuring cardiac output in conscious rabbits: validation studies, uses, and limitations. J Pharmacol Methods 1990; 24: 263276.

    • Search Google Scholar
    • Export Citation
  • 34. Zhuang ZW, Gao L, Murakami M, et al. Arteriogenesis: noninvasive quantification with multi–detector row CT angiography and three-dimensional volume rendering in rodents. Radiology 2006; 240: 698707.

    • Search Google Scholar
    • Export Citation
  • 35. Hur J, Kim YJ, Shim HS, et al. Assessment of atherosclerotic plaques in a rabbit model by delayed-phase contrast-enhanced CT angiography: comparison with histopathology. Int J Cardiovasc Imaging 2012; 28: 353363.

    • Search Google Scholar
    • Export Citation
  • 36. Krautwald-Junghanns ME, Schloemer J, Pees M. Iodine-based contrast media in avian medicine. J Exot Pet Med 2008; 17: 189197.

  • 37. Krautwald-Junghanns ME, Schrooff S, Bartels T. Contrast studies of the cardiovascular system (angiocardiography). In: Krautwald-Junghanns ME, Pees M, Reese S, et al, eds. Diagnostic imaging of exotic pets. Hannover, Germany: Schlütersche Verlagsgesellschaft mbH & Co, 2011;32.

    • Search Google Scholar
    • Export Citation
  • 38. Eller A, Wuest W, Kramer M, et al. Carotid CTA: radiation exposure and image quality with the use of attenuation-based, automated kilovolt selection. AJNR Am J Neuroradiol 2014; 35: 237241.

    • Search Google Scholar
    • Export Citation
  • 39. Yu L, Liu X, Leng S, et al. Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med 2009; 1: 6584.

    • Search Google Scholar
    • Export Citation
  • 40. Liu Y, Hopper KD, Mauger DT, et al. CT angiography measurement of the carotid artery: optimizing visualization by manipulating window and level settings and contrast material attenuation. Radiology 2000; 217: 494500.

    • Search Google Scholar
    • Export Citation
  • 41. Suzuki S, Furui S, Kaminaga T, et al. Measurement of vascular diameter in vitro by automated software for CT angiography: effects of inner diameter, density of contrast medium, and convolution kernel. AJR Am J Roentgenol 2004; 182: 13131317.

    • Search Google Scholar
    • Export Citation
  • 42. Lell MM, Anders K, Uder M, et al. New techniques in CT angiography. Radiographics 2006;26:S45S62.

  • 43. Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. I. Prediction with a computer model. Radiology 1998; 207: 647655.

    • Search Google Scholar
    • Export Citation
  • 44. Tsai IC, Lee T, Chen MC, et al. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol 2007; 37: 818825.

    • Search Google Scholar
    • Export Citation
  • 45. Jadhav SP, Golriz F, Atweh LA, et al. CT angiography of neonates and infants: comparison of radiation dose and image quality of target mode prospectively ECG-gated 320-MDCT and ungated helical 64-MDCT. AJR Am J Roentgenol 2015;204:W184W191.

    • Search Google Scholar
    • Export Citation
  • 46. Paul JF. Multislice CT of the heart and great vessels in congenital heart disease patients. In: Schoepf UF, ed. CT of the heart: principles and applications. Totowa, NJ: Humana Press, 2005;161169.

    • Search Google Scholar
    • Export Citation

Advertisement

Comparison of three computed tomographic angiography protocols to assess diameters of major arteries in African grey parrots (Psittacus erithacus)

Pin Huan Yu DVM, PhD1, Yen Lin Lee DVM, MS2, Chia Li Chen DVM, MS3, and Chau-Hwa Chi DVM, PhD4
View More View Less
  • 1 Institute of Veterinary Clinical Science of Veterinary Medicine, National Taiwan University, Da'an District, Taipei 10617, Taiwan.
  • | 2 Institute of Veterinary Clinical Science of Veterinary Medicine, National Taiwan University, Da'an District, Taipei 10617, Taiwan.
  • | 3 Institute of Veterinary Clinical Science of Veterinary Medicine, National Taiwan University, Da'an District, Taipei 10617, Taiwan.
  • | 4 Institute of Veterinary Clinical Science of Veterinary Medicine, National Taiwan University, Da'an District, Taipei 10617, Taiwan.

Abstract

OBJECTIVE To evaluate 3 contrast medium infusion (CMI) protocols for CT angiography (CTA) and measurement of major artery diameters in African grey parrots (Psittacus erithacus).

ANIMALS 9 African grey parrots with no detectable cardiovascular disease.

PROCEDURES Each bird was anesthetized and underwent placement of an IV catheter in the left basilic vein and 16-slice CTA scanning (started at peak aortic enhancement) with each of 3 CMI protocols at ≥ 1-month intervals. Protocol 1 involved catheter flushing with saline (0.9% NaCl) solution and IV infusion of iopamidol (2 mL) followed by saline solution (0.2 mL; total infused volume, 5 mL). Protocol 2 involved IV infusion of iopamidol (2 mL) followed by saline solution (0.4 mL; total infused volume, 2.4 mL). Protocol 3 involved catheter flushing with saline solution and IV administration of iopamidol (2 mL; total infused volume, 4.8 mL). The diameters of 6 major arteries were measured by 2 observers, and intra- and interobserver agreement, time-enhancement variables, and patient factors affecting contrast medium enhancement were assessed.

RESULTS Among the 3 CMI protocols, CTA-derived arterial diameters differed significantly. Measurements obtained with protocol 2 were significantly larger than those obtained with the other protocols. Uniformity of the time-enhancement variables differed among CMI protocols. Patient factors had nonsignificant effects on contrast medium enhancement.

CONCLUSIONS AND CLINICAL RELEVANCE Of the CMI protocols assessed, a 2-phase CMI protocol with a post-CMI saline solution flush was the most reliable for CTA-derived measurements of the major thoracic and abdominal arteries in African grey parrots. However, further technique modification is needed.

Contributor Notes

Address correspondence to Dr. Chi (chie@ntu.edu.tw).