• 1. Kuoni W, Augustiny N, Rübel A. Application of magnetic resonance imaging in reptile medicine. MAGMA 1993; 1:6163.

  • 2. Jacobson ER. Reptiles. Vet Clin North Am Small Anim Pract 1987; 17:12031225.

  • 3. Redrobe SP. Ultrasound of exotic species. In: Mannion P, ed. Diagnostic ultrasound in small animal practice. Oxford, England: Blackwell, 2006;301331.

    • Search Google Scholar
    • Export Citation
  • 4. Valente AL, Cuenca R, Parga ML, et al. Cervical and coelomic radiologic features of the loggerhead sea turtle, Caretta caretta. Can J Vet Res 2006; 70:285290.

    • Search Google Scholar
    • Export Citation
  • 5. Isaza R, Ackermann N, Jacobson ER. Ultrasound imaging of the coelomic structures in the boa constrictor (Boa constrictor). Vet Radiol Ultrasound 1993; 34:445450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Sainsbury AW, Gili C. Ultrasonographic anatomy and scanning technique of the celomic organs of the Bosc monitor (Varanus exanthematicus). J Zoo Wildl Med 1991; 22:421433.

    • Search Google Scholar
    • Export Citation
  • 7. Holland MF, Hernandez-Divers S, Frank PM. Ultrasonographic appearance of the coelomic cavity in healthy green iguanas. J Am Vet Med Assoc 2008; 233:590596.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Bucy DS, Guzman DS, Zwingenberger AL. Ultrasonographic anatomy of bearded dragons (Pogona vitticeps). J Am Vet Med Assoc 2015; 246:868876.

  • 9. Penninck DG, Stewart JS, Paulmurphy J, et al. Ultrasonography of the California desert tortoise (Xerobates agassizi)—anatomy and application. Vet Radiol 1991; 32:112116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Casares M. Untersuchungen zum Fortpflanzungsgeschehen bei Riesenschildkroeten (Geochelone elephantopus und G. gigantea) und Landschildkroeten (Testudo graeca und T. hermanni) anhand von Ultraschalldiagnostik und Steroidanalysen im Kot. Zool Gart NF 1995; 65:5076.

    • Search Google Scholar
    • Export Citation
  • 11. Schildger BJ, Tenhu H, Kramer M, et al. Ultrasonography in reptiles. Berl Munch Tierarztl Wochenschr 1996; 109:136141.

  • 12. Hernandez-Divers S, Hernandez-Divers S. Diagnostic imaging in reptiles. In Pract 2001; 23:370391.

  • 13. Silverman S, Janssen DL. Diagnostic imaging (special techniques and procedures). In: Mader DR, ed. Reptile medicine and surgery. Philadelphia: WB Saunders Co, 1996;258264.

    • Search Google Scholar
    • Export Citation
  • 14. Stetter MD. Diagnostic imaging of reptiles. In: Bonagura JD, ed. Kirk's current veterinary therapy XIII small animal practice. 13th ed. Philadelphia: WB Saunders Co, 2000;11631168.

    • Search Google Scholar
    • Export Citation
  • 15. Wyneken J. Contemporary computed tomography and magnetic resonance imaging of reptile anatomy. In: Mader DR, Divers S, eds. Current therapy in reptile medicine and surgery. St Louis: Elsevier Health Sciences, 2013;93106.

    • Search Google Scholar
    • Export Citation
  • 16. Mathes KA, Günther P, Kowaleski N, et al. Im Beckenbereich festsitzend Harnstein bei einer Maurischen Landschildkroete (Testudo graeca). Tieraerztl Prax Ausg K Kleintiere Heimtiere Tieraerztliche Prax Kleintiere 2009; 37:427432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Silverman S. Diagnostic imaging. In: Mader DR, ed. Reptile medicine and surgery. St Louis: Saunders Elsevier, 2006;471489.

  • 18. Rübel A, Kuoni W, Augustiny N. Emerging techniques. CT scan and MRI in reptile medicine. Semin Avian Exotic Pet Med 1994; 3:156160.

    • Search Google Scholar
    • Export Citation
  • 19. Straub J, Jurina K. Magnet resonance imaging in chelonians. Semin Avian Exotic Pet Med 2001; 10:181186.

  • 20. Pees M, Ludewig E, Plenz B, et al. Imaging diagnosis—seminoma causing liver compression in a spur-thighed tortoise (Testudo graeca). Vet Radiol Ultrasound 2015; 56:E21E24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Raiti P, Haramati N. Magnetic resonance imaging and computerized tomography of a gravid leopard tortoise (Geochelone pardalis pardalis) with metabolic bone disease. J Zoo Wildl Med 1997; 28:189197.

    • Search Google Scholar
    • Export Citation
  • 22. Pye GW, Jacobson ER, Newell SM, et al. Serratia marcescens infection in a gopher tortoise, Gopherus polyphemus, and use of magnetic resonance imaging in diagnosing systemic disease. Bull Assoc Reptil Amphib Vet 1999; 9:811.

    • Search Google Scholar
    • Export Citation
  • 23. Rasmussen AS, Lauridsen H, Laustsen C, et al. High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiol 2010; 10:18.

    • Search Google Scholar
    • Export Citation
  • 24. Lauridsen H, Hansen K, Wang T, et al. Inside out: modern imaging techniques to reveal animal anatomy. PLoS One 2011; 6:e17879.

  • 25. Erlacher-Reid CD, Norton TM, Harms CA, et al. Intestinal and cloacal strictures in free-ranging and aquarium-maintained green sea turtles (Chelonia mydas). J Zoo Wildl Med 2013; 44:408429.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Meyer J. Roentgenologische, computertomographische und kernspintomographische Untersuchungen zum Verdauungstrakt der Griechischen Landschildkroete (Testudo Hermanni). In: Veterinaermedizinische Universitaet Wien Universitaetsklinik fuer Roentgenologie. Vienna: Veterinaermedizinische Universitaet Wien, 1996;197.

    • Search Google Scholar
    • Export Citation
  • 27. Summa N. Anatomical atlas by magnetic resonance imaging (MRI) of the red-eared slider turtle. Trachemy scripta (Schoepff, 1792). Nantes, France: La Faculté de Veterinaire Médecine de Nantes, Oniris école nationale vétérinaire agroalomentaire et de l'alimentation Nantes–Atlantiques, 2010;206.

    • Search Google Scholar
    • Export Citation
  • 28. Effer N. Zur Schnittbildanatomie der griechischen Landschildkroete (Testudo hermanni boettgeri) in der Magnetresonanztomografie: Physiologische und pathologische Befunde sowie transhibernale Veraenderungen unter definierten Bedingungen. Gieβen, Germany: Justus-Liebig-Universitaet Gieβen, 2004;202.

    • Search Google Scholar
    • Export Citation
  • 29. Croft LA, Graham JP, Schaf SA, et al. Evaluation of magnetic resonance imaging for detection of internal tumors in green turtles with cutaneous fibropapillomatosis. J Am Vet Med Assoc 2004; 225:14281435.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Valente AL, Cuenca R, Zamora MA, et al. Sectional anatomic and magnetic resonance imaging features of coelomic structures of loggerhead sea turtles. Am J Vet Res 2006; 67:13471353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31. Summa NM, Risi EE, Fusellier M, et al. Magnetic resonance imaging and cross-sectional anatomy of the coelomic cavity in a red-eared slider (Trachemys scripta elegans) and yellow-bellied sliders (Trachemys scripta scripta). J Herpetological Med Surg 2012; 22:107116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Arencibia A, Hidalgo MR, Vázquez JM, et al. Sectional anatomic and magnetic resonance imaging features of the head of juvenile loggerhead sea turtles (Caretta caretta). Am J Vet Res 2012; 73:11191127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Mans C, Drees R, Sladky KK, et al. Effects of body position and extension of the neck and extremities on lung volume measured via computed tomography in red-eared slider turtles (Trachemys scripta elegans). J Am Vet Med Assoc 2013; 243:11901196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Winer BJ. Design & analysis of single-factor experiments. In: Winer BJ, Brown DR, Michels KM, eds. Statistical principles in experimental design. New York: McGraw-Hill, 1971;149260.

    • Search Google Scholar
    • Export Citation
  • 35. Ramsey PH. Power differences between pairwise multiple comparisons. J Am Stat Assoc 1978; 73:479485.

  • 36. Wilkinson R, Hernandez-Divers S, Lafortune M, et al. Diagnostic imaging techniques. In: McArthur S, Wilkinson R, Meyer J, eds. Medicine and surgery of tortoises and turtles. Oxford, England: Blackwell Publishing Ltd, 2004;187238.

    • Search Google Scholar
    • Export Citation
  • 37. Blackband SJ, Stoskopf MK. In vivo nuclear magnetic resonance imaging and spectroscopy of aquatic organisms. Magn Reson Imaging 1990; 8:191198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Silverman S. Diagnostic imaging of exotic pets. Vet Clin North Am Small Anim Pract 1993; 23:12871299.

  • 39. Holz P, Holz RM. Evaluation of ketamine, ketamine-xylazine and ketamine-midazolam anesthesia in red-eared sliders (Trachemys scripta elegans). J Zoo Wildl Med 1994; 25:531537.

    • Search Google Scholar
    • Export Citation
  • 40. Greer LL, Jenne KJ, Diggs HE. Medetomidine-ketamine anesthesia in red-eared slider turtles (Trachemys scripta elegans). Contemp Top Lab Anim Sci 2001; 40:811.

    • Search Google Scholar
    • Export Citation
  • 41. Stoskopf MK. Clinical imaging in zoological medicine: a review. J Zoo Wildl Med 1989; 20:396412.

  • 42. Wilkinson R. Clinical pathology. In: McArthur S, Wilkinson R, Meyer J, eds. Medicine and surgery of tortoises and turtles. Oxford, England: Blackwell Publishing Ltd, 2004;141186.

    • Search Google Scholar
    • Export Citation

Advertisement

Magnetic resonance imaging measurements of organs within the coelomic cavity of red-eared sliders (Trachemys scripta elegans), yellow-bellied sliders (Trachemys scripta scripta), Coastal plain cooters (Pseudemys concinna floridana), and hieroglyphic river cooters (Pseudemys concinna hieroglyphica)

Karina A. Mathes DVM, Dr Med Vet1, Marcus Schnack DVM, Dr Med Vet2, Karl Rohn DVM, Dr Med Vet3, and Michael Fehr DVM, Prof Dr Med Vet4
View More View Less
  • 1 Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
  • | 2 Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
  • | 3 Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
  • | 4 Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.

Abstract

OBJECTIVE To determine anatomic reference points for 4 turtle species and to evaluate data on relative anatomic dimensions, signal intensities (SIs), and position of selected organs within the coelomic cavity by use of MRI.

ANIMALS 3 turtle cadavers (1 red-eared slider [Trachemys scripta elegans], 1 yellow-bellied slider [Trachemys scripta scripta], and 1 Coastal plain cooter [Pseudemys concinna floridana]) and 63 live adult turtles (30 red-eared sliders, 20 yellow-bellied sliders, 5 Coastal plain cooters, and 8 hieroglyphic river cooters [Pseudemys concinna hieroglyphica]).

PROCEDURES MRI and necropsy were performed on the 3 turtle cadavers. Physical examination, hematologic evaluation, and whole-body radiography were performed on the 63 live turtles. Turtles were sedated, and MRI in transverse, sagittal, and dorsal planes was used to measure organ dimensions, position within the coelomic cavity, and SIs. Body positioning after sedation was standardized with the head, neck, limbs, and tail positioned in maximum extension.

RESULTS Measurements of the heart, liver, gallbladder, and kidneys in sagittal, transverse, and dorsal planes; relative position of those organs within the coelom; and SIs of the kidneys and liver were obtained with MRI and provided anatomic data for these 4 turtle species.

CONCLUSIONS AND CLINICAL RELEVANCE MRI was a valuable tool for determining the position, dimensions, and SIs of selected organs. Measurement of organs in freshwater chelonians was achievable with MRI. Further studies are needed to establish reference values for anatomic structures in turtles. Results reported here may serve as guidelines and aid in clinical interpretation of MRI images for these 4 species.

Abstract

OBJECTIVE To determine anatomic reference points for 4 turtle species and to evaluate data on relative anatomic dimensions, signal intensities (SIs), and position of selected organs within the coelomic cavity by use of MRI.

ANIMALS 3 turtle cadavers (1 red-eared slider [Trachemys scripta elegans], 1 yellow-bellied slider [Trachemys scripta scripta], and 1 Coastal plain cooter [Pseudemys concinna floridana]) and 63 live adult turtles (30 red-eared sliders, 20 yellow-bellied sliders, 5 Coastal plain cooters, and 8 hieroglyphic river cooters [Pseudemys concinna hieroglyphica]).

PROCEDURES MRI and necropsy were performed on the 3 turtle cadavers. Physical examination, hematologic evaluation, and whole-body radiography were performed on the 63 live turtles. Turtles were sedated, and MRI in transverse, sagittal, and dorsal planes was used to measure organ dimensions, position within the coelomic cavity, and SIs. Body positioning after sedation was standardized with the head, neck, limbs, and tail positioned in maximum extension.

RESULTS Measurements of the heart, liver, gallbladder, and kidneys in sagittal, transverse, and dorsal planes; relative position of those organs within the coelom; and SIs of the kidneys and liver were obtained with MRI and provided anatomic data for these 4 turtle species.

CONCLUSIONS AND CLINICAL RELEVANCE MRI was a valuable tool for determining the position, dimensions, and SIs of selected organs. Measurement of organs in freshwater chelonians was achievable with MRI. Further studies are needed to establish reference values for anatomic structures in turtles. Results reported here may serve as guidelines and aid in clinical interpretation of MRI images for these 4 species.

Contributor Notes

Address correspondence to Dr. Mathes (karina.mathes@tiho-hannover.de).