• 1. Rockwood K, Rockwood MR, Mitnitski A. Physiological redundancy in older adults in relation to the change with age in the slope of a frailty index. J Am Geriatr Soc 2010; 58: 318323.

    • Search Google Scholar
    • Export Citation
  • 2. Kuchel GA. Frailty, allostatic load, and the future of predictive gerontology. J Am Geriatr Soc 2009; 57: 17041706.

  • 3. Clegg A, Young J, Iliffe S, et al. Frailty in elderly people. Lancet 2013; 381: 752762.

  • 4. Larrick JW, Mendelsohn A. Applied Healthspan engineering. Rejuvenation Res 2010; 13: 265280.

  • 5. Theou O, Brothers TD, Mitnitski A, et al. Operationalization of frailty using eight commonly used scales and comparison of their ability to predict all-cause mortality. J Am Geriatr Soc 2013; 61: 15371551.

    • Search Google Scholar
    • Export Citation
  • 6. Cesari M, Gambassi G, van Kan GA, et al. The frailty phenotype and the frailty index: different instruments for different purposes. Age Ageing 2014; 43: 1012.

    • Search Google Scholar
    • Export Citation
  • 7. Fried LP, Ferrucci L, Darer J, et al. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci 2004; 59: 255263.

    • Search Google Scholar
    • Export Citation
  • 8. Kim SK. Common aging pathways in worms, flies, mice and humans. J Exp Biol 2007; 210: 16071612.

  • 9. Languille S, Blanc S, Blin O, et al. The grey mouse lemur: a non-human primate model for ageing studies. Ageing Res Rev 2012; 11: 150162.

    • Search Google Scholar
    • Export Citation
  • 10. Waters DJ. Aging research 2011: exploring the pet dog paradigm. ILAR J 2011; 52:97105.

  • 11. Parker HG, Shearin AL, Ostrander EA. Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annu Rev Genet 2010; 44: 309336.

    • Search Google Scholar
    • Export Citation
  • 12. Rowell JL, McCarthy DO, Alvarez CE. Dog models of naturally occurring cancer. Trends Mol Med 2011; 17: 380388.

  • 13. Hamlin RL. Geriatric heart diseases in dogs. Vet Clin North Am Small Anim Pract 2005; 35: 597615.

  • 14. Bosch MN, Pugliese M, Gimeno-Bayon J, et al. Dogs with cognitive dysfunction syndrome: a natural model of Alzheimer's disease. Curr Alzheimer Res 2012; 9: 298314.

    • Search Google Scholar
    • Export Citation
  • 15. O'Neill DG, Church DB, McGreevy PD, et al. Longevity and mortality of owned dogs in England. Vet J 2013; 198: 638643.

  • 16. Bellows J, Colitz CM, Daristotle L, et al. Defining healthy aging in older dogs and differentiating healthy aging from disease. J Am Vet Med Assoc 2015; 246: 7789.

    • Search Google Scholar
    • Export Citation
  • 17. Kirkland JL, Peterson C. Healthspan, translation, and new outcomes for animal studies of aging. J Gerontol A Biol Sci Med Sci 2009; 64: 209212.

    • Search Google Scholar
    • Export Citation
  • 18. Liu H, Graber TG, Ferguson-Stegall L, et al. Clinically relevant frailty index for mice. J Gerontol A Biol Sci Med Sci 2014; 69: 14851491.

    • Search Google Scholar
    • Export Citation
  • 19. Rockwood K, Song X, MacKnight C, et al. A global clinical measure of fitness and frailty in elderly people. CMAJ 2005; 173: 489495.

    • Search Google Scholar
    • Export Citation
  • 20. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 2001; 56: M146M156.

    • Search Google Scholar
    • Export Citation
  • 21. Desquilbet L, Jacobson LP, Fried LP, et al. HIV-1 infection is associated with an earlier occurrence of a phenotype related to frailty. J Gerontol A Biol Sci Med Sci 2007; 62: 12791286.

    • Search Google Scholar
    • Export Citation
  • 22. Laflamme DP. Nutrition for aging cats and dogs and the importance of body condition. Vet Clin North Am Small Anim Pract 2005; 35: 713742.

    • Search Google Scholar
    • Export Citation
  • 23. Desquilbet L, Mariotti F. Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 2010; 29: 10371057.

    • Search Google Scholar
    • Export Citation
  • 24. Patronek GJ, Waters DJ, Glickman LT. Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 1997; 52: B171B178.

    • Search Google Scholar
    • Export Citation
  • 25. Parks RJ, Fares E, Macdonald JK, et al. A procedure for creating a frailty index based on deficit accumulation in aging mice. J Gerontol A Biol Sci Med Sci 2012; 67: 217227.

    • Search Google Scholar
    • Export Citation
  • 26. Yang Y, Lee LC. Dynamics and heterogeneity in the process of human frailty and aging: evidence from the U.S. older adult population. J Gerontol B Psychol Sci Soc Sci 2010; 65B:246255.

    • Search Google Scholar
    • Export Citation
  • 27. Afilalo J, Karunananthan S, Eisenberg MJ, et al. Role of frailty in patients with cardiovascular disease. Am J Cardiol 2009; 103: 16161621.

    • Search Google Scholar
    • Export Citation
  • 28. Meurs KM. Genetics of cardiac disease in the small animal patient. Vet Clin North Am Small Anim Pract 2010; 40: 701715.

  • 29. Lipsitz LA. Physiological complexity, aging, and the path to frailty. Sci Aging Knowledge Environ 2004; 16: pe16.

  • 30. Fried LP, Xue QL, Cappola AR, et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: implications for etiology and treatment. J Gerontol A Biol Sci Med Sci 2009; 64: 10491057.

    • Search Google Scholar
    • Export Citation
  • 31. Arum O, Rasche ZA, Rickman DJ, et al. Prevention of neuromusculoskeletal frailty in slow-aging ames dwarf mice: longitudinal investigation of interaction of longevity genes and caloric restriction. PLoS ONE 2013; 8: e72255.

    • Search Google Scholar
    • Export Citation
  • 32. Graber TG, Ferguson-Stegall L, Liu H, et al. Voluntary aerobic exercise reverses frailty in old mice. J Gerontol A Biol Sci Med Sci 2015; 70: 10451058.

    • Search Google Scholar
    • Export Citation
  • 33. Walston J, Hadley EC, Ferrucci L, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc 2006; 54: 9911001.

    • Search Google Scholar
    • Export Citation
  • 34. Ziv E, Hu D. Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 2011; 10: 201204.

  • 35. Sutter NB, Bustamante CD, Chase K, et al. A single IGF1 allele is a major determinant of small size in dogs. Science 2007; 316: 112115.

    • Search Google Scholar
    • Export Citation
  • 36. Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. Age (Dordr) 2011; 33: 475483.

  • 37. Gerdhem P, Ringsberg KA, Obrant KJ, et al. Association between 25-hydroxy vitamin D levels, physical activity, muscle strength and fractures in the prospective population-based OPRA Study of Elderly Women. Osteoporos Int 2005; 16: 14251431.

    • Search Google Scholar
    • Export Citation
  • 38. Wong YY, McCaul KA, Yeap BB, et al. Low vitamin D status is an independent predictor of increased frailty and all-cause mortality in older men: the Health in Men Study. J Clin Endocrinol Metab 2013; 98: 38213828.

    • Search Google Scholar
    • Export Citation
  • 39. Kraus MS, Rassnick KM, Wakshlag JJ, et al. Relation of vitamin D status to congestive heart failure and cardiovascular events in dogs. J Vet Intern Med 2014; 28: 109115.

    • Search Google Scholar
    • Export Citation
  • 40. Wakshlag JJ, Rassnick KM, Malone EK, et al. Cross-sectional study to investigate the association between vitamin D status and cutaneous mast cell tumours in Labrador Retrievers. Br J Nutr 2011; 106 (Suppl 1):S6063.

    • Search Google Scholar
    • Export Citation
  • 41. Morley JE, Malmstrom TK. Frailty, sarcopenia, and hormones. Endocrinol Metab Clin North Am 2013; 42: 391405.

  • 42. Waters DL, Baumgartner RN, Garry PJ, et al. Advantages of dietary, exercise-related, and therapeutic interventions to prevent and treat sarcopenia in adult patients: an update. Clin Interv Aging 2010; 5: 259270.

    • Search Google Scholar
    • Export Citation
  • 43. Freeman LM. Cachexia and sarcopenia: emerging syndromes of importance in dogs and cats. J Vet Intern Med 2012; 26: 317.

  • 44. Head E. A Canine model of human aging and Alzheimer's disease. Biochim Biophys Acta 2013; 1832: 13841389.

  • 45. Canevelli M, Cesari M, van Kan GA. Frailty and cognitive decline: how do they relate? Curr Opin Clin Nutr Metab Care 2015; 18: 4350.

    • Search Google Scholar
    • Export Citation
  • 46. Heckler MCT, Tranquilim MV, Svicero DJ, et al. Clinical feasibility of cognitive testing in dogs (Canis lupus familiaris). J Vet Behav 2014; 9: 612.

    • Search Google Scholar
    • Export Citation
  • 47. Kane AE, Hilmer SN, Boyer D, et al. Impact of longevity interventions on a validated mouse clinical frailty index. J Gerontol A Biol Sci Med Sci 2016; 71: 333339.

    • Search Google Scholar
    • Export Citation
  • 48. Yuan R, Peters LL, Paigen B. Mice as a mammalian model for research on the genetics of aging. ILAR J 2011; 52: 415.

  • 49. Cesari M, Vellas B, Gambassi G. The stress of aging. Exp Gerontol 2013; 48: 451456.

  • 50. Barthelemy I, Barrey E, Thibaud JL, et al. Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscul Disord 2009; 19: 788796.

    • Search Google Scholar
    • Export Citation
  • 51. Hutchinson D, Sutherland-Smith J, Watson AL, et al. Assessment of methods of evaluating sarcopenia in old dogs. Am J Vet Res 2012; 73: 17941800.

    • Search Google Scholar
    • Export Citation
  • 52. Waters DJ, Kengeri SS, Maras AH, et al. Probing the perils of dichotomous binning: how categorizing female dogs as spayed or intact can misinform our assumptions about the lifelong health consequences of ovariohysterectomy. Theriogenology 2011; 76: 14961500.

    • Search Google Scholar
    • Export Citation
  • 53. Proschowsky HF, Rugbjerg H, Ersboll AK. Mortality of purebred and mixed-breed dogs in Denmark. Prev Vet Med 2003; 58: 6374.

  • 54. Roubenoff R. Sarcopenic obesity: does muscle loss cause fat gain? Lessons from rheumatoid arthritis and osteoarthritis. Ann N Y Acad Sci 2000; 904: 553557.

    • Search Google Scholar
    • Export Citation
  • 55. Blaum CS, Xue QL, Michelon E, et al. The association between obesity and the frailty syndrome in older women: the Women's Health and Aging Studies. J Am Geriatr Soc 2005; 53: 927934.

    • Search Google Scholar
    • Export Citation
  • 56. Kumar HK, Verma A, Muthukrishnan J, et al. Obesity and hypothyroidism: symbiotic coexistence. Arch Intern Med 2008; 168: 2168.

  • 57. Dixon RM, Reid SW, Mooney CT. Epidemiological, clinical, haematological and biochemical characteristics of canine hypothyroidism. Vet Rec 1999; 145: 481487.

    • Search Google Scholar
    • Export Citation
  • 58. Credille KM, Slater MR, Moriello KA, et al. The effects of thyroid hormones on the skin of Beagle dogs. J Vet Intern Med 2001; 15: 539546.

    • Search Google Scholar
    • Export Citation

Advertisement

Assessment of frailty in aged dogs

View More View Less
  • 1 Clinique vétérinaire du Locci, 169 avenue Henri Barbusse, 93700 Drancy, France.
  • | 2 Unité mixte de recherche, 7179 du Centre National de Recherche Scientifique et du Muséum National d'Histoire Naturelle, 1 avenue du Petit Château, 91800 Brunoy, France.
  • | 3 Clinique vétérinaire Saint Bernard, 598 avenue de Dunkerque, 59160 Lomme, France.
  • | 4 Unité de Cardiologie d'Alfort, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France.
  • | 5 Ecole des Chiens Guides de Paris, 105 avenue de Saint-Maurice, 75012 Paris, France.
  • | 6 Unité mixte de recherche, 7179 du Centre National de Recherche Scientifique et du Muséum National d'Histoire Naturelle, 1 avenue du Petit Château, 91800 Brunoy, France.
  • | 7 Unité d'Ethologie, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France.
  • | 8 Unité mixte de recherche, 7179 du Centre National de Recherche Scientifique et du Muséum National d'Histoire Naturelle, 1 avenue du Petit Château, 91800 Brunoy, France.
  • | 9 Unité d'Epidémiologie Clinique et de Biostatistique, Ecole Nationale Vétérinaire d'Alfort, 94704 Maisons-Alfort, France.

Abstract

OBJECTIVE To define a frailty-related phenotype—a clinical syndrome associated with the aging process in humans—in aged dogs and to investigate its association with time to death.

ANIMALS 116 aged guide dogs.

PROCEDURES Dogs underwent a clinical geriatric assessment (CGA) and were followed to either time of death or the study cutoff date. A 5-component clinical definition of a frailty phenotype was derived from clinical items included in a geriatric health evaluation scoresheet completed by veterinarians during the CGA. Univariate (via Kaplan-Meier curves) and multivariate (via Cox proportional hazards models) survival analyses were used to investigate associations of the 5 CGA components with time to death.

RESULTS 76 dogs died, and the median time from CGA to death was 4.4 years. Independent of age at the time of CGA, dogs that had ≥ 2 of the 5 components (n = 10) were more likely to die during the follow-up period, compared with those that had 1 or no components (adjusted hazard ratio, 3.9 [95% confidence interval, 1.4 to 10.9]). After further adjustments for subclinical or clinical diseases and routine biomarkers, the adjusted hazard ratio remained significant.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that signs of frailty appeared to be a risk factor for death in dogs. The concept of frailty in dogs requires further development.

IMPACT FOR HUMAN MEDICINE The concept of frailty, as defined for humans, seems transposable to dogs. Given that they share humans' environments and develop several age-related diseases similar to those in humans, dogs may be useful for the study of environmental or age-related risk factors for frailty in humans.

Contributor Notes

Address correspondence to Dr. Desquilbet (loic.desquilbet@gmail.com).