Pharmacokinetics of an oral extended-release formulation of doxycycline hyclate containing acrylic acid and polymethacrylate in dogs

Sara Melisa Arciniegas Ruiz Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. 04510, México.

Search for other papers by Sara Melisa Arciniegas Ruiz in
Current site
Google Scholar
PubMed
Close
 MS
,
Lilia Gutiérrez Olvera Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. 04510, México.

Search for other papers by Lilia Gutiérrez Olvera in
Current site
Google Scholar
PubMed
Close
 PhD
,
Sara del Carmen Caballero Chacón Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. 04510, México.

Search for other papers by Sara del Carmen Caballero Chacón in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Dinorah Vargas Estrada Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. 04510, México.

Search for other papers by Dinorah Vargas Estrada in
Current site
Google Scholar
PubMed
Close
 PhD

Abstract

OBJECTIVE To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid–polymethacrylate-based matrices.

ANIMALS 30 healthy adult dogs.

PROCEDURES In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment.

RESULTS Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.

Abstract

OBJECTIVE To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid–polymethacrylate-based matrices.

ANIMALS 30 healthy adult dogs.

PROCEDURES In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment.

RESULTS Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.

Contributor Notes

Address correspondence to Dr. Vargas Estrada (dinorah.vestrada@gmail.com).
  • 1. Holmes N, Charles P. Safety and efficacy review of doxycycline. Clin Med Ther 2009; 1: 471482.

  • 2. Zeng S, Zhou X, Tu Y, et al. Long-term MMP inhibition by doxycycline exerts divergent effect on ventricular extracellular matrix deposition and systolic performance in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 2011; 33: 316324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Lee H, Park JW, Kim SP, et al. Doxycycline inhibits matrix metal-loproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis 2009; 34: 189198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Cunha BA, Domenico P, Cunha CB. Pharmacodynamics of doxycycline. Clin Microbiol Infect 2000; 6: 270273.

  • 5. Riond J, Riviere J. Pharmacology and toxicology of doxycycline binding to plasma albumin of several species. J Vet Pharmacol Ther 1988; 12: 253260.

    • Search Google Scholar
    • Export Citation
  • 6. Smith K, Leyden JJ. Safety of doxycycline and minocycline: a systematic review. Clin Ther 2005; 27: 13291342.

  • 7. Xiao SY, Zhao L, Hart J, et al. Gastric mucosal necrosis with vascular degeneration induced by doxycycline. Am J Surg Pathol 2013; 37: 259263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Levett P, Edward C. Leptospirosis. In: Evans AS, Brachman PS, eds. Bacterial infections of human: epidemiology and control. 4th ed. New York: Springer, 2009; 439456.

    • Search Google Scholar
    • Export Citation
  • 9. McClure JC, Crothers ML, Schaefer JJ, et al. Efficacy of a doxycycline treatment regimen initiated during three different phases of experimental Ehrlichiosis. Antimicrob Agents Chemother 2010; 54: 50125020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Bharti AR, Nally JE, Ricaldi JN, et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 2003; 3: 757771.

  • 11. Vargas-Estrada D, Gracia-Mora J, Sumano H. Pharmacokinetic study of an injectable long-acting parenteral formulation of doxycycline hyclate in calves. Res Vet Sci 2008; 84: 477482.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Vargas D, Gutiérrez L, Juárez I, et al. Pharmacokinetics after administration of an injectable experimental long-acting parenteral formulation of doxycycline hyclate in goats. Am J Vet Res 2008; 69: 10851090.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13. Gutiérrez L, Velasco Z, Vázquez C, et al. Pharmacokinetics of an injectable long-acting formulation of doxycycline hyclate in dogs. Acta Vet Scand 2012; 54: 3543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Zozaya H, Gutierrez L, Bernad M, et al. Pharmacokinetics of a peroral single dose of two long-acting formulations and an aqueous formulation of doxycycline hyclate in horses. Acta Vet Scand 2013; 55: 2128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Polson AM, Southard G, Dunn R, et al. Periodontal pocket treatment in Beagle dogs using subgingival doxycycline from a biodegradable system. I. Initial clinical responses. J Periodontol 1996; 67: 11761184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Zetner K, Rothmueller G. Treatment of periodontal pockets with doxycycline in Beagles. Vet Ther 2002; 3: 441452.

  • 17. Rajesh M, Narayanan N, Chacko A. Formulation and evaluation of mucoadhesive microcapsules of aceclofenac using methyl cellulose and acrylic acid as mucoadhesive polymers. Int J Pharm Pharm Sci 2012; 4: 362366.

    • Search Google Scholar
    • Export Citation
  • 18. Blanco-Fuente H, Anguiano-Igea S, Otero-Espinar F. In-vitro bio-adhesion of acrylic acid hydrogels. Int J Pharm 1996; 142: 169174.

  • 19. Karthikeyini C, Jayaprakash S, Abirami A, et al. Formulation and evaluation of aceclofenac sodium bilayer sustained release tablets. Int J ChemTech Res 2009; 1: 13811385.

    • Search Google Scholar
    • Export Citation
  • 20. Vasantha PV, Puratchikody A, Mathew S, et al. Development and characterization of polymethacrylate based mucoadhesive buccal patches of salbutamol sulfate. Saudi Pharm J 2011; 19: 207214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21. Evonik Industries AG. Chapter 6. In: Polymethacrylate application guidelines. 12th ed. Darmstadt, Germany: Evonik Industries AG, 2013;18.

    • Search Google Scholar
    • Export Citation
  • 22. US pharmacopeia and national formulary. USP 30-NF 25. Vol 2. Rockville, Md: US Pharmacopeia Convention, 2007;15531554.

  • 23. Faure A, York P, Rowe R. Process control and scale-up of pharmaceutical wet granulation processes: a review. Eur J Pharm Biopharm 2001; 52: 269277.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Kulkarni SV, Kumar R, Shankar MS, et al. Formulation and in vitro evaluation of sustained release matrix tablet of stavudine. Asian J Pharm Clin Res 2010; 3: 215217.

    • Search Google Scholar
    • Export Citation
  • 25. Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. London: Pharmaceutical Press, 2012:525533.

  • 26. Okerman L, Croubels S, Cherlet M, et al. Evaluation and establishing the performance of different screening tests for tetracycline residues in animal tissues. Food Addit Contam 2004; 21: 145153.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Yamaoka K, Nakagawa T, Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 1978; 6: 165175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Wagner JG. Simple linear models. In: Wagner JG, ed. Pharmacokinetics for the pharmaceutical scientist. Lancaster, Pa: Technomic Publishing Co, 1993:114.

    • Search Google Scholar
    • Export Citation
  • 29. Gabrielsson J, Weiner D. Parameter estimation. In: Gabrielsson J, Weiner D, eds. Pharmacokinetic and pharmacodynamic data analysis, concepts and applications. 4th ed. Stockholm: Swedish Pharmaceutical Press, 2007;2144.

    • Search Google Scholar
    • Export Citation
  • 30. Boxenbaum H. Pharmacokinetics tricks and traps: flip-flop models. J Pharm Pharm Sci 1998; 1: 9091.

  • 31. Abd El-Aty AM, Goudah A, Zhou HH. Pharmacokinetics of doxycycline after administration as a single intravenous bolus and intramuscular doses to non-lactating Egyptian goats. Pharmacol Res 2004; 49: 487491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Gilbert JC, Richardson JL, Davies MC, et al. The effect of solutes and polymers on the gelation properties of pluronic F127 solutions for controlled drug delivery. J Control Release 1987; 5: 113118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Lawrence MJ. Surfactant systems microemulsions and vesicles as vehicles for drug delivery. Eur J Drug Metab Pharmacokinet 1994; 19: 257269.

  • 34. Inskeep P, Darrington R. Utilization of biopharmaceutical and pharmacokinetic principles in the development of veterinary controlled release drug delivery systems. In: Rathbone MJ, Gurny R, eds. Controlled release veterinary drug delivery. Amsterdam: Elsevier Science BV, 2000; 115.

    • Search Google Scholar
    • Export Citation
  • 35. Toutain PL, Bousquet-Mélou A. Bioavailability and its assessment. J Vet Pharmacol Ther 2004; 27: 455466.

  • 36. Chopra I, Howe T, Linton AH, et al. The tetracyclines: prospects at the beginning of the 1980s. J Antimicrob Chemother 1981; 8: 521.

  • 37. Yáñez JA, Remsberg CM, Sayre CL, et al. Flip-flop pharmacokinetics—delivering a reversal of disposition: challenges and opportunities during drug development. Ther Deliv 2011; 2: 643672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. El-Neweshy MS. Experimental doxycycline overdose in rats causes cardiomyopathy. Int J Exp Pathol 2013; 94: 109114.

  • 39. Riond JL, Riviere JE, Duckett WM, et al. Cardiovascular effects and fatalities associated with intravenous administration of doxycycline to horses and ponies. Equine Vet J 1992; 24: 4145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Böcker R. Analysis and quantitation of a metabolite of doxycycline in mice, rats, and humans by high-performance liquid chromatography. J Chromatogr 1983; 274: 255262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Davoust B, Keundjian A, Rous V, et al. Validation of chemoprevention of canine monocytic ehrlichiosis with doxycycline. Vet Microbiol 2005; 107: 279283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Murray CK, Hospenthal DR. Determination of susceptibilities of 26 Leptospira sp. serovars to 24 antimicrobial agents by a broth microdilution technique. Antimicrob Agents Chemother 2004; 48: 40024005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Pudjiatmoko, Fukushi H, Ochiai Y, et al. In vitro susceptibility of Chlamydia pecorum to macrolides, tetracyclines, quinolones and beta-lactam. Microbiol Immunol 1998; 42: 6163.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Pappas G, Akritidis N, Bosilkovski N, et al. Brucellosis. N Engl J Med 2005; 352: 23252336.

  • 45. Ganiere JP, Medaille C, Mangion C. Antimicrobial drug susceptibility of Staphylococcus intermedius clinical isolates from canine pyoderma. J Vet Med B Infect Dis Vet Public Health 2005; 52: 2531.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Ross JE, Jones RN. MIC quality control guidelines for doxycycline when testing grampositive control strains by the reference methods. Diagn Microbiol Infect Dis 2004; 50: 295297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Speakman AJ, Dawson S, Corkill JE, et al. Antibiotic susceptibility of canine Bordetella bronchiseptica isolates. Vet Microbiol 2000; 71: 193200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. Del Castillo JR. Tetracyclines. In: Giguere S, Prescott J, Dowling PM, eds. Antimicrobial therapy in veterinary medicine. 3th ed. Ames, Iowa: Wiley Blackwell, 2013;257268.

    • Search Google Scholar
    • Export Citation
  • 49. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 110.

  • 50. Lubrizol Advanced Materials Inc. Toxicity of Carbopol polymers as a class. Technical Data Sheet 93. Countryside, Ill: Lubrizol Advanced Materials Inc, 2011; 13.

    • Search Google Scholar
    • Export Citation

Advertisement