Effect of ketamine on the minimum infusion rate of propofol needed to prevent motor movement in dogs

Rachel A. Reed Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Search for other papers by Rachel A. Reed in
Current site
Google Scholar
PubMed
Close
 DVM
,
M. Reza Seddighi Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Search for other papers by M. Reza Seddighi in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Agricola Odoi Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Search for other papers by Agricola Odoi in
Current site
Google Scholar
PubMed
Close
 BVM, PhD
,
Sherry K. Cox Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Search for other papers by Sherry K. Cox in
Current site
Google Scholar
PubMed
Close
 PhD
,
Christine M. Egger Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Search for other papers by Christine M. Egger in
Current site
Google Scholar
PubMed
Close
 DVM, MVSc
, and
Thomas J. Doherty Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Search for other papers by Thomas J. Doherty in
Current site
Google Scholar
PubMed
Close
 MVB, MSc

Abstract

OBJECTIVE To determine the minimum infusion rate (MIR) of propofol required to prevent movement in response to a noxious stimulus in dogs anesthetized with propofol alone or propofol in combination with a constant rate infusion (CRI) of ketamine.

ANIMALS 6 male Beagles.

PROCEDURES Dogs were anesthetized on 3 occasions, at weekly intervals, with propofol alone (loading dose, 6 mg/kg; initial CRI, 0.45 mg/kg/min), propofol (loading dose, 5 mg/kg; initial CRI, 0.35 mg/kg/min) and a low dose of ketamine (loading dose, 2 mg/kg; CRI, 0.025 mg/kg/min), or propofol (loading dose, 4 mg/kg; initial CRI, 0.3 mg/kg/min) and a high dose of ketamine (loading dose, 3 mg/kg; CRI, 0.05 mg/kg/min). After 60 minutes, the propofol MIR required to prevent movement in response to a noxious electrical stimulus was determined in duplicate.

RESULTS Least squares mean ± SEM propofol MIRs required to prevent movement in response to the noxious stimulus were 0.76 ± 0.1 mg/kg/min, 0.60 ± 0.1 mg/kg/min, and 0.41 ± 0.1 mg/kg/min when dogs were anesthetized with propofol alone, propofol and low-dose ketamine, and propofol and high-dose ketamine, respectively. There were significant decreases in the propofol MIR required to prevent movement in response to the noxious stimulus when dogs were anesthetized with propofol and low-dose ketamine (27 ± 10%) or with propofol and high-dose ketamine (30 ± 10%).

CONCLUSIONS AND CLINICAL RELEVANCE Ketamine, at the doses studied, significantly decreased the propofol MIR required to prevent movement in response to a noxious stimulus in dogs.

Abstract

OBJECTIVE To determine the minimum infusion rate (MIR) of propofol required to prevent movement in response to a noxious stimulus in dogs anesthetized with propofol alone or propofol in combination with a constant rate infusion (CRI) of ketamine.

ANIMALS 6 male Beagles.

PROCEDURES Dogs were anesthetized on 3 occasions, at weekly intervals, with propofol alone (loading dose, 6 mg/kg; initial CRI, 0.45 mg/kg/min), propofol (loading dose, 5 mg/kg; initial CRI, 0.35 mg/kg/min) and a low dose of ketamine (loading dose, 2 mg/kg; CRI, 0.025 mg/kg/min), or propofol (loading dose, 4 mg/kg; initial CRI, 0.3 mg/kg/min) and a high dose of ketamine (loading dose, 3 mg/kg; CRI, 0.05 mg/kg/min). After 60 minutes, the propofol MIR required to prevent movement in response to a noxious electrical stimulus was determined in duplicate.

RESULTS Least squares mean ± SEM propofol MIRs required to prevent movement in response to the noxious stimulus were 0.76 ± 0.1 mg/kg/min, 0.60 ± 0.1 mg/kg/min, and 0.41 ± 0.1 mg/kg/min when dogs were anesthetized with propofol alone, propofol and low-dose ketamine, and propofol and high-dose ketamine, respectively. There were significant decreases in the propofol MIR required to prevent movement in response to the noxious stimulus when dogs were anesthetized with propofol and low-dose ketamine (27 ± 10%) or with propofol and high-dose ketamine (30 ± 10%).

CONCLUSIONS AND CLINICAL RELEVANCE Ketamine, at the doses studied, significantly decreased the propofol MIR required to prevent movement in response to a noxious stimulus in dogs.

All Time Past Year Past 30 Days
Abstract Views 107 0 0
Full Text Views 1620 1304 163
PDF Downloads 582 363 63
Advertisement