Influence of biomechanical parameters on cranial cruciate ligament–deficient or –intact canine stifle joints assessed by use of a computer simulation model

Nathan P. Brown Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, KY 40202.

Search for other papers by Nathan P. Brown in
Current site
Google Scholar
PubMed
Close
 PhD
,
Gina E. Bertocci Department of Bioengineering, J. B. Speed School of Engineering, University of Louisville, Louisville, KY 40202.

Search for other papers by Gina E. Bertocci in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Denis J. Marcellin-Little Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Denis J. Marcellin-Little in
Current site
Google Scholar
PubMed
Close
 DEDV

Click on author name to view affiliation information

Abstract

OBJECTIVE To investigate the influence of 4 biomechanical parameters on canine cranial cruciate ligament (CrCL)-intact and -deficient stifle joints.

SAMPLE Data for computer simulations of a healthy 5-year-old 33-kg neutered male Golden Retriever in a previously developed 3-D rigid body pelvic limb computer model simulating the stance phase during walking.

PROCEDURES Canine stifle joint biomechanics were assessed when biomechanical parameters (CrCL stiffness, CrCL prestrain, body weight, and stifle joint friction coefficient) were altered in the pelvic limb computer simulation model. Parameters were incrementally altered from baseline values to determine the influence on stifle joint outcome measures (ligament loads, relative tibial translation, and relative tibial rotation). Stifle joint outcome measures were compared between CrCL-intact and -deficient stifle joints for the range of parameters evaluated.

RESULTS In the CrCL-intact stifle joint, ligament loads were most sensitive to CrCL prestrain. In the CrCL-deficient stifle joint, ligament loads were most sensitive to body weight. Relative tibial translation was most sensitive to body weight, whereas relative tibial rotation was most sensitive to CrCL prestrain.

CONCLUSIONS AND CLINICAL RELEVANCE In this study, computer model sensitivity analyses predicted that CrCL prestrain and body weight influenced stifle joint biomechanics. Cranial cruciate ligament laxity may influence the likelihood of CrCL deficiency. Body weight could play an important role in management of dogs with a CrCL-deficient stifle joint.

Abstract

OBJECTIVE To investigate the influence of 4 biomechanical parameters on canine cranial cruciate ligament (CrCL)-intact and -deficient stifle joints.

SAMPLE Data for computer simulations of a healthy 5-year-old 33-kg neutered male Golden Retriever in a previously developed 3-D rigid body pelvic limb computer model simulating the stance phase during walking.

PROCEDURES Canine stifle joint biomechanics were assessed when biomechanical parameters (CrCL stiffness, CrCL prestrain, body weight, and stifle joint friction coefficient) were altered in the pelvic limb computer simulation model. Parameters were incrementally altered from baseline values to determine the influence on stifle joint outcome measures (ligament loads, relative tibial translation, and relative tibial rotation). Stifle joint outcome measures were compared between CrCL-intact and -deficient stifle joints for the range of parameters evaluated.

RESULTS In the CrCL-intact stifle joint, ligament loads were most sensitive to CrCL prestrain. In the CrCL-deficient stifle joint, ligament loads were most sensitive to body weight. Relative tibial translation was most sensitive to body weight, whereas relative tibial rotation was most sensitive to CrCL prestrain.

CONCLUSIONS AND CLINICAL RELEVANCE In this study, computer model sensitivity analyses predicted that CrCL prestrain and body weight influenced stifle joint biomechanics. Cranial cruciate ligament laxity may influence the likelihood of CrCL deficiency. Body weight could play an important role in management of dogs with a CrCL-deficient stifle joint.

All Time Past Year Past 30 Days
Abstract Views 56 0 0
Full Text Views 305 176 13
PDF Downloads 93 40 6
Advertisement