Use of an inertial measurement unit to assess the effect of forelimb lameness on three-dimensional hoof orientation in horses at a walk and trot

Valerie J. Moorman Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.

Search for other papers by Valerie J. Moorman in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Raoul F. Reiser II Department of Health and Exercise Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.

Search for other papers by Raoul F. Reiser II in
Current site
Google Scholar
PubMed
Close
 PhD
,
Christie A. Mahaffey Mechanical Engineering Department, College of Engineering, University of Maine, Orono, ME 04473.

Search for other papers by Christie A. Mahaffey in
Current site
Google Scholar
PubMed
Close
 PhD
,
Michael L. Peterson Mechanical Engineering Department, College of Engineering, University of Maine, Orono, ME 04473.

Search for other papers by Michael L. Peterson in
Current site
Google Scholar
PubMed
Close
 PhD
,
C. Wayne McIlwraith Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.

Search for other papers by C. Wayne McIlwraith in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD, DSc
, and
Christopher E. Kawcak Gail Holmes Equine Orthopaedic Research Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523.

Search for other papers by Christopher E. Kawcak in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine intralimb orientation changes with an inertial measurement unit (IMU) in hooves of horses at a walk and trot after induction of weight-bearing single forelimb lameness and to determine whether hoof orientations are similar to baseline values following perineural anesthesia.

Animals—6 clinically normal horses.

Procedures—3-D hoof orientations were determined with an IMU mounted on the right forelimb hoof during baseline conditions, during 3 grades of lameness (induced by application of pressure to the sole), and after perineural anesthesia. Linear acceleration profiles were used to segment the stride into hoof breakover, stance, initial swing, terminal swing, and total swing phases. Intralimb data comparisons were made for each stride segment. A repeated-measures mixed-model ANOVA was used for data analysis.

Results—Lameness resulted in significant changes in hoof orientation in all planes of rotation. A significant increase in external rotation and abduction and a significant decrease in sagittal plane rotation of the hoof were detected at hoof breakover during lameness conditions. For sagittal plane orientation data, the SDs determined following perineural anesthesia were higher than the SDs for baseline and lameness conditions.

Conclusions and Clinical Relevance—Results of this study indicated the IMU could be used to detect 3-D hoof orientation changes following induction of mild lameness at a walk and trot. An increase in data variability for a sagittal orientation may be useful for assessment of local anesthesia for hooves. The IMU should be further evaluated for use in clinical evaluation of forelimb lameness in horses.

Abstract

Objective—To determine intralimb orientation changes with an inertial measurement unit (IMU) in hooves of horses at a walk and trot after induction of weight-bearing single forelimb lameness and to determine whether hoof orientations are similar to baseline values following perineural anesthesia.

Animals—6 clinically normal horses.

Procedures—3-D hoof orientations were determined with an IMU mounted on the right forelimb hoof during baseline conditions, during 3 grades of lameness (induced by application of pressure to the sole), and after perineural anesthesia. Linear acceleration profiles were used to segment the stride into hoof breakover, stance, initial swing, terminal swing, and total swing phases. Intralimb data comparisons were made for each stride segment. A repeated-measures mixed-model ANOVA was used for data analysis.

Results—Lameness resulted in significant changes in hoof orientation in all planes of rotation. A significant increase in external rotation and abduction and a significant decrease in sagittal plane rotation of the hoof were detected at hoof breakover during lameness conditions. For sagittal plane orientation data, the SDs determined following perineural anesthesia were higher than the SDs for baseline and lameness conditions.

Conclusions and Clinical Relevance—Results of this study indicated the IMU could be used to detect 3-D hoof orientation changes following induction of mild lameness at a walk and trot. An increase in data variability for a sagittal orientation may be useful for assessment of local anesthesia for hooves. The IMU should be further evaluated for use in clinical evaluation of forelimb lameness in horses.

All Time Past Year Past 30 Days
Abstract Views 126 0 0
Full Text Views 653 469 15
PDF Downloads 203 103 5
Advertisement