Comparison of air sac volume, lung volume, and lung densities determined by use of computed tomography in conscious and anesthetized Humboldt penguins (Spheniscus humboldti) positioned in ventral, dorsal, and right lateral recumbency

Benjamin N. Nevitt Illinois Zoological and Aquatic Animal Residency Program, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Benjamin N. Nevitt in
Current site
Google Scholar
PubMed
Close
 DVM
,
Jennifer N. Langan Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.
Chicago Zoological Society, Brookfield Zoo, 3300 Golf Rd, Brookfield, IL 60513.

Search for other papers by Jennifer N. Langan in
Current site
Google Scholar
PubMed
Close
 DVM
,
Michael J. Adkesson Chicago Zoological Society, Brookfield Zoo, 3300 Golf Rd, Brookfield, IL 60513.

Search for other papers by Michael J. Adkesson in
Current site
Google Scholar
PubMed
Close
 DVM
,
Mark A. Mitchell Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Mark A. Mitchell in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Margaret Henzler Department of Human Oncology, University of Wisconsin, Madison, WI 53792.

Search for other papers by Margaret Henzler in
Current site
Google Scholar
PubMed
Close
 MS
, and
Randi Drees Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Randi Drees in
Current site
Google Scholar
PubMed
Close
 Dr med vet

Click on author name to view affiliation information

Abstract

Objective—To determine the effects of recumbency on air sac volume, lung volume, and lung densities in CT images of healthy, conscious and anesthetized spontaneously breathing Humboldt penguins (Spheniscus humboldti).

Animals—25 adult (13 male and 12 female) Humboldt penguins.

Procedures—CT images of conscious penguins in ventral recumbency and anesthetized penguins in dorsal, ventral, and right lateral recumbency were obtained. Air sac volume, lung volume, and lung densities in CT images were calculated. A paired samples t test was used to determine whether right and left lung densities differed among recumbencies. Repeated-measures ANOVA (controlled for sex and order of recumbencies during CT) was used to determine whether air sac or lung volumes differed among recumbencies.

Results—Recumbency had a significant effect on air sac volume but not lung volume. Air sac volume was largest in conscious penguins in ventral recumbency (mean ± SD, 347.2 ± 103.1 cm3) and lowest in anesthetized penguins in dorsal recumbency (median, 202.0 cm3; 10th to 90th percentile, 129.2 to 280.3 cm3). Lung densities were highest in anesthetized penguins in dorsal recumbency (right lung median, 0.522 g/cm3; left lung median, 0.511 g/cm3) and lowest in anesthetized penguins in ventral recumbency (right lung median, 0.488 g/cm3; left lung median, 0.482 g/cm3).

Conclusions and Clinical Relevance—Results indicated that anesthetized Humboldt penguins had the lowest air sac volume and highest lung densities in dorsal recumbency. Therefore, this recumbency may not be recommended. Minimal changes in lung volume were detected among recumbencies or between conscious and anesthetized penguins.

Abstract

Objective—To determine the effects of recumbency on air sac volume, lung volume, and lung densities in CT images of healthy, conscious and anesthetized spontaneously breathing Humboldt penguins (Spheniscus humboldti).

Animals—25 adult (13 male and 12 female) Humboldt penguins.

Procedures—CT images of conscious penguins in ventral recumbency and anesthetized penguins in dorsal, ventral, and right lateral recumbency were obtained. Air sac volume, lung volume, and lung densities in CT images were calculated. A paired samples t test was used to determine whether right and left lung densities differed among recumbencies. Repeated-measures ANOVA (controlled for sex and order of recumbencies during CT) was used to determine whether air sac or lung volumes differed among recumbencies.

Results—Recumbency had a significant effect on air sac volume but not lung volume. Air sac volume was largest in conscious penguins in ventral recumbency (mean ± SD, 347.2 ± 103.1 cm3) and lowest in anesthetized penguins in dorsal recumbency (median, 202.0 cm3; 10th to 90th percentile, 129.2 to 280.3 cm3). Lung densities were highest in anesthetized penguins in dorsal recumbency (right lung median, 0.522 g/cm3; left lung median, 0.511 g/cm3) and lowest in anesthetized penguins in ventral recumbency (right lung median, 0.488 g/cm3; left lung median, 0.482 g/cm3).

Conclusions and Clinical Relevance—Results indicated that anesthetized Humboldt penguins had the lowest air sac volume and highest lung densities in dorsal recumbency. Therefore, this recumbency may not be recommended. Minimal changes in lung volume were detected among recumbencies or between conscious and anesthetized penguins.

All Time Past Year Past 30 Days
Abstract Views 94 0 0
Full Text Views 450 213 36
PDF Downloads 348 167 21
Advertisement