Evaluation of thermal antinociceptive effects after intramuscular administration of buprenorphine hydrochloride to American kestrels (Falco sparverius)

Susanne M. Ceulemans Department of Companion Animal Medicine, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.

Search for other papers by Susanne M. Ceulemans in
Current site
Google Scholar
PubMed
Close
 MSc, DVM
,
David Sanchez-Migallon Guzman Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by David Sanchez-Migallon Guzman in
Current site
Google Scholar
PubMed
Close
 LV, MS
,
Glenn H. Olsen US Geological Survey, Patuxent Wildlife Research Center, 12100 Beech Forest Rd, Ste 4039, Laurel, MD 20708.

Search for other papers by Glenn H. Olsen in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Hugues Beaufrère Health Sciences Center, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Hugues Beaufrère in
Current site
Google Scholar
PubMed
Close
 DrMedVet, PhD
, and
Joanne R. Paul-Murphy Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Joanne R. Paul-Murphy in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of buprenorphine hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Buprenorphine hydrochloride (0.1, 0.3, and 0.6 mg/kg) and a control treatment (saline [0.9% NaCl] solution) were administered IM in a randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus. Adverse effects were monitored for 6 hours after treatment administration.

Results—Buprenorphine hydrochloride at 0.1, 0.3, and 0.6 mg/kg, IM, increased thermal threshold for 6 hours, compared with the response for the control treatment. There were no significant differences among buprenorphine treatments. A mild sedative effect was detected at a dose of 0.6 mg of buprenorphine/kg.

Conclusion and Clinical Relevance—At the doses tested, buprenorphine hydrochloride resulted in thermal antinociception in American kestrels for at least 6 hours, which suggested that buprenorphine has analgesic effects in this species. Further studies with longer evaluation periods and additional forms of noxious stimuli, formulations, dosages, and routes of administration are needed to fully evaluate the analgesic effects of buprenorphine in American kestrels.

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of buprenorphine hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Buprenorphine hydrochloride (0.1, 0.3, and 0.6 mg/kg) and a control treatment (saline [0.9% NaCl] solution) were administered IM in a randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus. Adverse effects were monitored for 6 hours after treatment administration.

Results—Buprenorphine hydrochloride at 0.1, 0.3, and 0.6 mg/kg, IM, increased thermal threshold for 6 hours, compared with the response for the control treatment. There were no significant differences among buprenorphine treatments. A mild sedative effect was detected at a dose of 0.6 mg of buprenorphine/kg.

Conclusion and Clinical Relevance—At the doses tested, buprenorphine hydrochloride resulted in thermal antinociception in American kestrels for at least 6 hours, which suggested that buprenorphine has analgesic effects in this species. Further studies with longer evaluation periods and additional forms of noxious stimuli, formulations, dosages, and routes of administration are needed to fully evaluate the analgesic effects of buprenorphine in American kestrels.

Contributor Notes

Dr. Ceulemans’ present address is Veterinary Practice Deurze-Smilde-Assen, Balkendwarsweg 1A NL-9405 PT, Assen, The Netherlands.

Presented in abstract form at the 34th Annual Association of Avian Veterinarians Conference, Jacksonville, Fla, August 2013.

Address correspondence to Dr. Guzman (guzman@ucdavis.edu).
  • 1. Pan ZZ, Hirakawa N, Fields HL. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 2000; 26: 515522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Sadée W, Rosenbaum JS, Herz A. Buprenorphine: differential interaction with opiate receptor subtypes in vivo. J Pharmacol Exp Ther 1982; 223: 157162.

    • Search Google Scholar
    • Export Citation
  • 3. Leander JD. Buprenorphine is a potent κ-opioid receptor antagonist in pigeons and mice. Eur J Pharmacol 1988; 151: 457461.

  • 4. Pick CG, Peter Y & Schreiber S, et al. Pharmacological characterization of buprenorphine, a mixed agonist-antagonist with kappa 3 analgesia. Brain Res 1997; 744: 4146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Picker MJ. Kappa agonist and antagonist properties of mixed action opioids in a pigeon drug discrimination procedure. J Pharmacol Exp Ther 1994; 268: 11901198.

    • Search Google Scholar
    • Export Citation
  • 6. Tyers MB. A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol 1980; 69: 503512.

  • 7. Pan ZZ, Tershner SA, Fields HL. Cellular mechanism for antianalgesic action of agonists of the kappa-opioid receptor. Nature 1997; 389: 382385.

  • 8. Pergolizzi J, Aloisi AM & Dahan A, et al. Current knowledge of buprenorphine and its unique pharmacological profile. Pain Pract 2010; 10: 428450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Christoph T, Kogel B & Schiene K, et al. Broad analgesic profile of buprenorphine in rodent models of acute and chronic pain. Eur J Pharmacol 2005; 507: 8798.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Raffa RB, Ding Z. Examination of the preclinical antinociceptive efficacy of buprenorphine and its designation as full- or partial-agonist. Acute Pain 2007; 9: 145152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11. Lizasoain I, Leza JC, Lorenzo P. Buprenorphine: bell-shaped dose-response curve for its antagonist effects. Gen Pharmacol 1991; 22: 297300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Kress HG. Clinical update on the pharmacology, efficacy and safety of transdermal buprenorphine. Eur J Pain 2009; 13: 219230.

  • 13. Dahan A, Yassen A & Romberg R, et al. Buprenorphine induces ceiling in respiratory depression but not in analgesia. Br J Anaesth 2006; 96: 627632.

  • 14. Guzman DS, Drazenovich TL & Olsen GH, et al. Evaluation of thermal antinociceptive effects after intramuscular administration of hydromorphone hydrochloride to American kestrels (Falco sparverius). Am J Vet Res 2013; 74: 817822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Guzman DS, Drazenovich TL & KuKanich B, et al. Evaluation of thermal antinociceptive effects and pharmacokinetics after intramuscular administration of butorphanol tartrate to American kestrels (Falco sparverius) . Am J Vet Res 2014; 75: 1118

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Guzman DS, Drazenovich TL & Olsen GH, et al. Evaluation of the thermal antinociceptive effects after oral administration of tramadol hydrochloride to American kestrels (Falco sparverius), Am J Vet Res 2014; 75: 117123

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Hall LW, Clarke KW, Trim CM. Opioid analgesics. Sedation, analgesia and premedication. In: Hall LW, Clarke KW, Trim CM, eds. Veterinary anaesthesia. London: WB Saunders Co, 2001; 93100.

    • Search Google Scholar
    • Export Citation
  • 18. Kerr C. Pain management 1: systemic analgesics. In: Seymour C, Duke-Novakovski T, eds. BSAVA manual of canine and feline anaesthesia and analgesia. Gloucester, England: BSAVA, 2007; 89103.

    • Search Google Scholar
    • Export Citation
  • 19. Paul-Murphy JR, Brunson DB, Miletic V. Analgesic effects of butorphanol and buprenorphine in conscious African grey parrots (Psittacus erithacus erithacus and Psittacus erithacus timneh). Am J Vet Res 1999; 60: 12181221.

    • Search Google Scholar
    • Export Citation
  • 20. Paul-Murphy JR, Brunson DB, Miletic V. A technique for evaluating analgesia in conscious perching birds. Am J Vet Res 1999; 60: 12131217.

    • Search Google Scholar
    • Export Citation
  • 21. Paul-Murphy JR, Hess JC, Fialkowski JP. Pharmacokinetic properties of a single intramuscular dose of buprenorphine in African grey parrots (Psittacus erithacus erithacus). J Avian Med Surg 2004; 18: 224228.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Gaggermeier B, Henke J & Schatzmann U, et al. Untersuchungen zur Schmerzlinderung mit buprenorphin bei Haustauben (Columba livia Gmel., 1789, var. domestica), in Proceedings. Annu Conf Assoc Avian Vet 2001; 7576.

    • Search Google Scholar
    • Export Citation
  • 23. Gentle MJ, Hocking PM & Bernard R, et al. Evaluation of intra-articular opioid analgesia for the relief of articular pain in the domestic fowl. Pharmacol Biochem Behav 1999; 63: 339343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Mogil JS. The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A 1999; 96: 77447751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Mogil JS, Chesler EJ & Wilson SG, et al. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev 2000; 24: 375389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Mogil JS, Ritchie J & Smith SB, et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet 2005; 42: 583587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Wilson SG, Smith SB & Chesler EJ, et al. The heritability of antinociception: common pharmacogenetic mediation of five neurochemically distinct analgesics. J Pharmacol Exp Ther 2003; 304: 547559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28. Van Engelen J, Akkerdaas I, Schoemaker NJ. A study into the analgesic efficacy of burprenorphine and butorphanol in pigeons (Columba livia domestica), in Proceedings. Annu Conf Assoc Avian Vet 2005; 1920.

    • Search Google Scholar
    • Export Citation
  • 29. Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev 2001; 53: 597652.

  • 30. Machin KL. Avian pain: physiology and evaluation. Compend Contin Educ Pract Vet 2005; 27: 98109.

  • 31. McDonald J, Lambert DG. Opioid receptors. Contin Educ Anaesth Crit Care Pain 2005; 5: 2225.

  • 32. Roughan JV, Flecknell PA. Buprenorphine: a reappraisal of its antinociceptive effects and therapeutic use in alleviating post-operative pain in animals. Lab Anim 2002; 36: 322343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33. Hoppes S, Flammer K & Hoersch K, et al. Disposition and analgesic effects of fentanyl in white cockatoos (Cacatua alba). J Avian Med Surg 2003; 17: 124130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Hothersall B, Caplen G & Nicol CJ, et al. Development of mechanical and thermal nociceptive threshold testing devices in unrestrained birds (broiler chickens). J Neurosci Methods 2011; 201: 220227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35. Guzman DS, KuKanich B & Keuler NS, et al. Antinociceptive effects of nalbuphine hydrochloride in Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2011; 72: 736740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36. Guzman DS, Flammer K & Paul-Murphy JR, et al. Pharmacokinetics of butorphanol after intravenous, intramuscular, and oral administration in Hispaniolan Amazon parrots (Amazona ventralis). J Avian Med Surg 2011; 25: 185191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. Csillag A, Bourne RC, Stewart MG. Distribution of mu, delta, and kappa opioid receptor binding sites in the brain of the one-day-old domestic chick (Gallus domesticus): an in vitro quantitative autoradiographic study. J Comp Neurol 1990; 302: 543551.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Mansour A, Khachaturian H & Lewis ME, et al. Anatomy of CNS opioid receptors. Trends Nurosci 1988; 11: 308314.

  • 39. Reiner A, Brauth SE & Kitt CA, et al. Distribution of mu, delta, and kappa opiate receptor types in the forebrain and midbrain of pigeons. J Comp Neurol 1989; 280: 359382.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. Drake CT, Patterson TA & Simmons ML, et al. Kappa opioid receptor-like immunoreactivity in guinea pig brain: ultrastructural localization in presynaptic terminals in hippocampal formation. J Comp Neurol 1996; 370: 377395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Mansour A, Fox CA & Burke S, et al. Immunohistochemical localization of the cloned mu opioid receptor in the rat CNS. J Chem Neuroanat 1995; 8: 283305.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement