Effect of body position on intra-abdominal pressures and abdominal perfusion pressures measured at three sites in horses anesthetized with short-term total intravenous anesthesia

Victoria H. Scott Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Victoria H. Scott in
Current site
Google Scholar
PubMed
Close
 BVetMed, MS
,
Jarred M. Williams Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Jarred M. Williams in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Margaret C. Mudge Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Margaret C. Mudge in
Current site
Google Scholar
PubMed
Close
 VMD
, and
Samuel D. Hurcombe Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Samuel D. Hurcombe in
Current site
Google Scholar
PubMed
Close
 BVMS, MS

Abstract

Objective—To assess effects of body position on direct measurements of intra-abdominal pressure (IAP) and abdominal perfusion pressure (APP) in horses anesthetized with total intravenous anesthesia (TIVA).

Animals—9 healthy adult horses.

Procedures—Instrumentation in unsedated standing horses involved insertion of an arterial catheter for blood pressure measurements and 3 intraperitoneal cannulas (left flank, right flank, and ventral abdomen) for IAP measurements. Baseline values were measured for heart rate, respiratory rate, systolic arterial blood pressure, mean arterial blood pressure (MAP), diastolic arterial blood pressure, and IAP. Horses were medicated with xylazine, and pressures were measured again. Anesthesia was induced with ketamine-diazepam and maintained with a ketamine-guaifenesin infusion. Horses were positioned twice into left lateral recumbency, right lateral recumbency, or dorsal recumbency. Hemodynamic pressures and accessible abdominal pressures were measured for each recumbency position. The APP was calculated as MAP – IAP. Differences in IAP, MAP, APP and sedation (standing horses) or body position (anesthetized horses) were compared by means of repeated-measures ANOVA or paired t tests.

Results—Baseline hemodynamic and IAPs were not different after xylazine administration. Ventral abdomen IAP and MAP were lower for horses in dorsal recumbency than in right or left lateral recumbency. Ventral abdomen APP remained unchanged. For lateral recumbencies, flank IAP was lower and APP was higher than pressure measurements at the same sites during dorsal recumbency.

Conclusions and Clinical Relevance—Body position affected IAP and APP in healthy anesthetized horses. These effects should be considered when developing IAP acquisition methods for use in horses with abdominal disease.

Abstract

Objective—To assess effects of body position on direct measurements of intra-abdominal pressure (IAP) and abdominal perfusion pressure (APP) in horses anesthetized with total intravenous anesthesia (TIVA).

Animals—9 healthy adult horses.

Procedures—Instrumentation in unsedated standing horses involved insertion of an arterial catheter for blood pressure measurements and 3 intraperitoneal cannulas (left flank, right flank, and ventral abdomen) for IAP measurements. Baseline values were measured for heart rate, respiratory rate, systolic arterial blood pressure, mean arterial blood pressure (MAP), diastolic arterial blood pressure, and IAP. Horses were medicated with xylazine, and pressures were measured again. Anesthesia was induced with ketamine-diazepam and maintained with a ketamine-guaifenesin infusion. Horses were positioned twice into left lateral recumbency, right lateral recumbency, or dorsal recumbency. Hemodynamic pressures and accessible abdominal pressures were measured for each recumbency position. The APP was calculated as MAP – IAP. Differences in IAP, MAP, APP and sedation (standing horses) or body position (anesthetized horses) were compared by means of repeated-measures ANOVA or paired t tests.

Results—Baseline hemodynamic and IAPs were not different after xylazine administration. Ventral abdomen IAP and MAP were lower for horses in dorsal recumbency than in right or left lateral recumbency. Ventral abdomen APP remained unchanged. For lateral recumbencies, flank IAP was lower and APP was higher than pressure measurements at the same sites during dorsal recumbency.

Conclusions and Clinical Relevance—Body position affected IAP and APP in healthy anesthetized horses. These effects should be considered when developing IAP acquisition methods for use in horses with abdominal disease.

All Time Past Year Past 30 Days
Abstract Views 70 0 0
Full Text Views 2171 1751 150
PDF Downloads 319 160 4
Advertisement