Collection and characterization of semen from Chilean rose tarantulas (Grammostola rosea)

Kate E. Archibald College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Kate E. Archibald in
Current site
Google Scholar
PubMed
Close
 DVM
,
Larry J. Minter College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Larry J. Minter in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Gregory A. Lewbart College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by Gregory A. Lewbart in
Current site
Google Scholar
PubMed
Close
 VMD, MS
, and
C. Scott Bailey College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607.

Search for other papers by C. Scott Bailey in
Current site
Google Scholar
PubMed
Close
 DVM, MS

Abstract

Objective—To establish a nonterminal semen collection method for use in captive Chilean rose tarantulas (Grammostola rosea) and to evaluate tools for investigating morphology and viability of spermatozoa.

Animals—7 mature male Chilean rose tarantulas.

Procedures—Each tarantula was anesthetized in a 500-mL induction chamber containing a cotton ball infused with 2 mL of isoflurane. Semen collection was performed by applying direct pressure to the palpal bulbs (sperm storage organs) located on the distal segment of the palpal limbs. Morphology of spermatozoa was examined by light microscopy and transmission and scanning electron microscopy. Propidium iodide and a fluorescent membrane-permeant nucleic acid dye were used to evaluate cell viability.

Results—Semen was collected successfully from all 7 tarantulas. Microscopic examination of semen samples revealed coenospermia (spherical capsules [mean ± SD diameter, 10.3 ± 1.6 μm] containing many nonmotile sperm cells [mean number of sperm cells/capsule, 18.5 ± 3.8]). Individual spermatozoa were characterized by a spiral-shaped cell body (mean length, 16.7 ± 1.4 μm; mean anterior diameter, 1.5 ± 0.14 μm). Each spermatozoon had no apparent flagellar structure. The fluorescent stains identified some viable sperm cells in the semen samples.

Conclusions and Clinical Relevance—The described technique allowed simple and repeatable collection of semen from Chilean rose tarantulas. Semen from this species was characterized by numerous spherical capsules containing many nonmotile spermatozoa in an apparently quiescent state. Fluorescent staining to distinguish live from dead spermatozoa appeared to be a useful tool for semen evaluation in this species.

Abstract

Objective—To establish a nonterminal semen collection method for use in captive Chilean rose tarantulas (Grammostola rosea) and to evaluate tools for investigating morphology and viability of spermatozoa.

Animals—7 mature male Chilean rose tarantulas.

Procedures—Each tarantula was anesthetized in a 500-mL induction chamber containing a cotton ball infused with 2 mL of isoflurane. Semen collection was performed by applying direct pressure to the palpal bulbs (sperm storage organs) located on the distal segment of the palpal limbs. Morphology of spermatozoa was examined by light microscopy and transmission and scanning electron microscopy. Propidium iodide and a fluorescent membrane-permeant nucleic acid dye were used to evaluate cell viability.

Results—Semen was collected successfully from all 7 tarantulas. Microscopic examination of semen samples revealed coenospermia (spherical capsules [mean ± SD diameter, 10.3 ± 1.6 μm] containing many nonmotile sperm cells [mean number of sperm cells/capsule, 18.5 ± 3.8]). Individual spermatozoa were characterized by a spiral-shaped cell body (mean length, 16.7 ± 1.4 μm; mean anterior diameter, 1.5 ± 0.14 μm). Each spermatozoon had no apparent flagellar structure. The fluorescent stains identified some viable sperm cells in the semen samples.

Conclusions and Clinical Relevance—The described technique allowed simple and repeatable collection of semen from Chilean rose tarantulas. Semen from this species was characterized by numerous spherical capsules containing many nonmotile spermatozoa in an apparently quiescent state. Fluorescent staining to distinguish live from dead spermatozoa appeared to be a useful tool for semen evaluation in this species.

All Time Past Year Past 30 Days
Abstract Views 73 0 0
Full Text Views 33660 32876 42
PDF Downloads 438 206 15
Advertisement