Evaluation of total white blood cell count as a marker for proviral load of bovine leukemia virus in dairy cattle from herds with a high seroprevalence of antibodies against bovine leukemia virus

Irene Alvarez Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Irene Alvarez in
Current site
Google Scholar
PubMed
Close
 PhD
,
Gerónimo Gutiérrez Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Gerónimo Gutiérrez in
Current site
Google Scholar
PubMed
Close
 PhD
,
Mariela Gammella Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Mariela Gammella in
Current site
Google Scholar
PubMed
Close
 BSc
,
Cecilia Martínez Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Cecilia Martínez in
Current site
Google Scholar
PubMed
Close
 BSc
,
Romina Politzki Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Romina Politzki in
Current site
Google Scholar
PubMed
Close
,
Cintia González Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Cintia González in
Current site
Google Scholar
PubMed
Close
,
Luciana Caviglia Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Luciana Caviglia in
Current site
Google Scholar
PubMed
Close
,
Hugo Carignano Instituto de Genética, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Hugo Carignano in
Current site
Google Scholar
PubMed
Close
 BSc
,
Norberto Fondevila Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Norberto Fondevila in
Current site
Google Scholar
PubMed
Close
 PhD
,
Mario Poli Instituto de Genética, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Mario Poli in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Karina Trono Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 1686, Hurlingham, Buenos Aires, Argentina.

Search for other papers by Karina Trono in
Current site
Google Scholar
PubMed
Close
 PhD

Abstract

Objective—To determine the reference interval for WBC counts in Holstein dairy cows from herds with high seroprevalence for anti–bovine leukemia virus (BLV) antibodies, analyze the correlation of total WBC counts and blood proviral load (bPVL) in BLV-infected animals, and determine whether total WBC count can be used a hematologic marker for in vivo infection.

Animals—307 lactating cows from 16 dairy herds with high BLV seroprevalence.

Procedures—Blood samples were collected for assessment of plasma anti–BLV p24 antibody concentration (all cows), manual determination of WBC count (161 BLV-seronegative cows from 15 herds), and evaluation of bPVL (146 cows from another herd).

Results—The WBC count reference interval (ie, mean ± 2 SD) for BLV-seronegative dairy cows was 2,153 to 11,493 cells/μL. Of the 146 cows used to analyze the correlation between WBC count and bPVL, 107 (73%) had WBC counts within the reference interval; of those cows, only 21 (19.6%) had high bPVL. Most cows with high WBC counts (35/39) had high bPVL. Mean WBC count for cows with high bPVL was significantly higher than values for cows with low or undetectable bPVL. White blood cell counts and bPVL were significantly (ρ = 0.71) correlated.

Conclusions and Clinical Relevance—These data have provided an updated reference interval for WBC counts in Holstein cows from herds with high BLV seroprevalence. In dairy cattle under natural conditions, WBC count was correlated with bPVL; thus, WBC count determination could be a potential tool for monitoring BLV infection levels in attempts to control transmission.

Abstract

Objective—To determine the reference interval for WBC counts in Holstein dairy cows from herds with high seroprevalence for anti–bovine leukemia virus (BLV) antibodies, analyze the correlation of total WBC counts and blood proviral load (bPVL) in BLV-infected animals, and determine whether total WBC count can be used a hematologic marker for in vivo infection.

Animals—307 lactating cows from 16 dairy herds with high BLV seroprevalence.

Procedures—Blood samples were collected for assessment of plasma anti–BLV p24 antibody concentration (all cows), manual determination of WBC count (161 BLV-seronegative cows from 15 herds), and evaluation of bPVL (146 cows from another herd).

Results—The WBC count reference interval (ie, mean ± 2 SD) for BLV-seronegative dairy cows was 2,153 to 11,493 cells/μL. Of the 146 cows used to analyze the correlation between WBC count and bPVL, 107 (73%) had WBC counts within the reference interval; of those cows, only 21 (19.6%) had high bPVL. Most cows with high WBC counts (35/39) had high bPVL. Mean WBC count for cows with high bPVL was significantly higher than values for cows with low or undetectable bPVL. White blood cell counts and bPVL were significantly (ρ = 0.71) correlated.

Conclusions and Clinical Relevance—These data have provided an updated reference interval for WBC counts in Holstein cows from herds with high BLV seroprevalence. In dairy cattle under natural conditions, WBC count was correlated with bPVL; thus, WBC count determination could be a potential tool for monitoring BLV infection levels in attempts to control transmission.

Contributor Notes

Supported by project PAE 37143 ANPCyT-INTA, INTA AESA-203992, Laboratorio de Virus Adventicios Instituto Nacional de Tecnología Agropecuaria (INTA), and Fundación ArgenINTA, Argentina.

Address correspondence to Dr. Alvarez (ialvarez@cnia.inta.gov.ar).
  • 1. Gillet N, Florins A, Boxus M, et al. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Kettmann R, Burny A, Callenbaut I, et al. Bovine leukemia virus. In: Levy JA, ed. The retroviridae. New York: Plenum Press, 1994;3981.

  • 3. Hopkins SG, DiGiacomo RF. Natural transmission of bovine leukemia virus in dairy and beef cattle. Vet Clin North Am Food Anim Pract 1997; 13:107128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Burny A, Cleuter Y, Kettmann R, et al. Bovine leukaemia: facts and hypotheses derived from the study of an infectious cancer. Cancer Surv 1987; 6:139159.

    • Search Google Scholar
    • Export Citation
  • 5. Mammerick M, Portetelle D, de Clercq K, et al. Experimental transmission of enzootic bovine leukosis to cattle, sheep and goats: infectious doses of blood and incubation period of the disease. Leuk Res 1987; 11:353358.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Gutiérrez G, Alvarez I, Politzki R, et al. Accurate detection of bovine leukemia virus specific antibodies using recombinant p24-ELISA. Vet Microbiol 2009; 137:224234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7. Gutiérrez G, Alvarez I, Politzki R, et al. Natural progression of bovine leukemia virus infection in Argentinean dairy cattle. Vet Microbiol 2011; 151:255263.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Lew AE, Bock RE, Molloy JB, et al. Sensitive and specific detection of proviral bovine leukemia virus by 5′ Taq nuclease PCR using a 3′ minor groove binder fluorogenic probe. J Virol Methods 2004; 115:167175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45.

  • 10. George JW, Snipes J, Lane VM. Comparison of bovine hematology reference intervals from 1957 to 2006. Vet Clin Pathol 2010; 39:138148.

  • 11. Bendixen HJ. Bovine enzootic leukosis. Adv Vet Sci 1965; 10:129204.

  • 12. Miller JM, Van Der Maaten MJ. Serologic response of cattle following inoculation with bovine leukemia virus. Bibl Haematol 1975; 43:187189.

    • Search Google Scholar
    • Export Citation
  • 13. Lewin HA, Wu MC, Nolan TJ, et al. Peripheral B lymphocyte percentage as an indicator of subclinical progression of bovine leukemia virus infection. J Dairy Sci 1988; 71:25262534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Weiss D, Wardrop KJ. Chapters 46 and 107. In: Schalm's veterinary hematology. 6th ed. Hoboken, NJ: Wiley-Blackwell, 2010;307313, 829–835.

    • Search Google Scholar
    • Export Citation
  • 15. Schalm OW. Veterinary hematology. 2nd ed. Philadelphia: Lea and Febiger, 1965;220.

  • 16. Trono KG, Pérez-Filgueira DM, Duffy S, et al. Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods. Vet Microbiol 2001; 83:235248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Gutierrez G, Carignano H, Alvarez I, et al. Bovine leukemia virus p24 antibodies reflect blood proviral load. BMC Vet Res 2012; 8:187.

  • 18. Juliarena MA, Gutiérrez SE, Ceriani C. Determination of proviral load in bovine leukemia virus-infected cattle with and without lymphocytosis. Am J Vet Res 2007; 68:12201225.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Florins A, Gillet N, Asquith B, et al. Cell dynamics and immune response to BLV infection: a unifying model. Front Biosci 2007; 12:15201531.

  • 20. Ureta-Vidal A, Angelin-Duclos C, Tortevoye P, et al. Mother-to-child transmission of human T-cell-leukemia/lymphoma virus type I: implication of high antiviral antibody titer and high proviral load in carrier mothers. Int J Cancer 1999; 82:832836.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement