Effects of serum and autologous conditioned serum on equine articular chondrocytes treated with interleukin-1 β

Eric R. Carlson Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Eric R. Carlson in
Current site
Google Scholar
PubMed
Close
 DVM
,
Allison A. Stewart Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Allison A. Stewart in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Kelly L. Carlson Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Kelly L. Carlson in
Current site
Google Scholar
PubMed
Close
 DVM
,
Sushmitha S. Durgam Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Sushmitha S. Durgam in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Holly C. Pondenis Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802.

Search for other papers by Holly C. Pondenis in
Current site
Google Scholar
PubMed
Close
 BS

Abstract

Objective—To compare the effects of autologous equine serum (AES) and autologous conditioned serum (ACS) on equine articular chondrocyte metabolism when stimulated with recombinant human (rh) interleukin (IL)-1β.

Sample—Articular cartilage and nonconditioned and conditioned serum from 6 young adult horses.

Procedures—Cartilage samples were digested, and chondrocytes were isolated and formed into pellets. Chondrocyte pellets were treated with each of the following: 10% AES, 10% AES and rhIL-1β, 20% AES and rhIL-1β, 10% ACS and rhIL-1β, and 20% ACS and rhIL-1β, and various effects of these treatments were measured.

Results—Recombinant human IL-1β treatment led to a decrease in chondrocyte glycosaminoglycan synthesis and collagen II mRNA expression and an increase in medium matrix metalloproteinase-3 activity and cyclooxygenase-2 mRNA expression. When results of ACS and rhIL-1β treatment were compared with those of AES and rhIL-1β treatment, no difference was evident in glycosaminoglycan release, total glycosaminoglycan concentration, total DNA content, or matrix metalloproteinase-3 activity. A significant increase was found in chondrocyte glycosaminoglycan synthesis with 20% AES and rhIL-1β versus 10% ACS and rhIL-1β. The medium from ACS and rhIL-1β treatment had a higher concentration of IL-1β receptor antagonist, compared with medium from AES and rhIL-1β treatment. Treatment with 20% ACS and rhIL-1β resulted in a higher medium insulin-like growth factor-I concentration than did treatment with 10% AES and rhIL-1β. No difference in mRNA expression was found between ACS and rhIL-1β treatment and AES and rhIL-1β treatment.

Conclusions and Clinical Relevance—Minimal beneficial effects of ACS treatment on proteoglycan matrix metabolism in equine chonrocytes were evident, compared with the effects of AES treatment.

Abstract

Objective—To compare the effects of autologous equine serum (AES) and autologous conditioned serum (ACS) on equine articular chondrocyte metabolism when stimulated with recombinant human (rh) interleukin (IL)-1β.

Sample—Articular cartilage and nonconditioned and conditioned serum from 6 young adult horses.

Procedures—Cartilage samples were digested, and chondrocytes were isolated and formed into pellets. Chondrocyte pellets were treated with each of the following: 10% AES, 10% AES and rhIL-1β, 20% AES and rhIL-1β, 10% ACS and rhIL-1β, and 20% ACS and rhIL-1β, and various effects of these treatments were measured.

Results—Recombinant human IL-1β treatment led to a decrease in chondrocyte glycosaminoglycan synthesis and collagen II mRNA expression and an increase in medium matrix metalloproteinase-3 activity and cyclooxygenase-2 mRNA expression. When results of ACS and rhIL-1β treatment were compared with those of AES and rhIL-1β treatment, no difference was evident in glycosaminoglycan release, total glycosaminoglycan concentration, total DNA content, or matrix metalloproteinase-3 activity. A significant increase was found in chondrocyte glycosaminoglycan synthesis with 20% AES and rhIL-1β versus 10% ACS and rhIL-1β. The medium from ACS and rhIL-1β treatment had a higher concentration of IL-1β receptor antagonist, compared with medium from AES and rhIL-1β treatment. Treatment with 20% ACS and rhIL-1β resulted in a higher medium insulin-like growth factor-I concentration than did treatment with 10% AES and rhIL-1β. No difference in mRNA expression was found between ACS and rhIL-1β treatment and AES and rhIL-1β treatment.

Conclusions and Clinical Relevance—Minimal beneficial effects of ACS treatment on proteoglycan matrix metabolism in equine chonrocytes were evident, compared with the effects of AES treatment.

All Time Past Year Past 30 Days
Abstract Views 148 0 0
Full Text Views 963 682 106
PDF Downloads 246 103 14
Advertisement