Pharmacokinetics, pharmacodynamics, and safety of zoledronic acid in horses

Jorge E. Nieto Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Jorge E. Nieto in
Current site
Google Scholar
PubMed
Close
 MVZ, PhD
,
Omar Maher William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Omar Maher in
Current site
Google Scholar
PubMed
Close
 DVM
,
Scott D. Stanley Kenneth L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Scott D. Stanley in
Current site
Google Scholar
PubMed
Close
 PhD
,
Heather K. Knych Kenneth L. Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Heather K. Knych in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Jack R. Snyder Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Jack R. Snyder in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine the pharmacokinetics, pharmacodynamics, and safety of zoledronic acid in horses.

Animals—8 healthy horses.

Procedures—A single dose of zoledronic acid (0.057 mg/kg, IV) was administered during a 30-minute period. Venous blood was collected at several time points. Zoledronic acid concentration in plasma was measured by liquid chromatography–tandem mass spectrometry, and pertinent pharmacokinetic parameters were determined. Plasma was analyzed for total calcium, BUN, and creatinine concentrations and a marker for bone resorption (C-terminal telopeptides of type I collagen).

Results—Zoledronic acid was safely administered IV during a 30-minute period, and no adverse effects were observed. Plasma concentrations of zoledronic acid were consistent with a 2-compartment mammillary model. Plasma concentrations of zoledronic acid were detected for up to 8 hours after administration. Mean total calcium concentrations in plasma were less than the reference range 7 days after zoledronic acid administration. A marker for bone remodeling decreased in concentration after zoledronic acid administration and remained low for the 1-year duration of the study. No changes in BUN and creatinine concentrations were observed after zoledronic acid administration.

Conclusions and Clinical Relevance—Zoledronic acid was safely administered in healthy horses. Zoledronic acid is reported as the strongest bisphosphonate presently available, and studies evaluating potential benefits of zoledronic acid in horses with orthopedic conditions are warranted.

Abstract

Objective—To determine the pharmacokinetics, pharmacodynamics, and safety of zoledronic acid in horses.

Animals—8 healthy horses.

Procedures—A single dose of zoledronic acid (0.057 mg/kg, IV) was administered during a 30-minute period. Venous blood was collected at several time points. Zoledronic acid concentration in plasma was measured by liquid chromatography–tandem mass spectrometry, and pertinent pharmacokinetic parameters were determined. Plasma was analyzed for total calcium, BUN, and creatinine concentrations and a marker for bone resorption (C-terminal telopeptides of type I collagen).

Results—Zoledronic acid was safely administered IV during a 30-minute period, and no adverse effects were observed. Plasma concentrations of zoledronic acid were consistent with a 2-compartment mammillary model. Plasma concentrations of zoledronic acid were detected for up to 8 hours after administration. Mean total calcium concentrations in plasma were less than the reference range 7 days after zoledronic acid administration. A marker for bone remodeling decreased in concentration after zoledronic acid administration and remained low for the 1-year duration of the study. No changes in BUN and creatinine concentrations were observed after zoledronic acid administration.

Conclusions and Clinical Relevance—Zoledronic acid was safely administered in healthy horses. Zoledronic acid is reported as the strongest bisphosphonate presently available, and studies evaluating potential benefits of zoledronic acid in horses with orthopedic conditions are warranted.

All Time Past Year Past 30 Days
Abstract Views 119 0 0
Full Text Views 1381 998 123
PDF Downloads 640 361 32
Advertisement