Florfenicol concentrations in ovine tear fluid following intramuscular and subcutaneous administration and comparison with the minimum inhibitory concentrations against mycoplasmal strains potentially involved in infectious keratoconjunctivitis

Alain Regnier UMR 181 Physiopathologie et Toxicologie Expérimentales, INRA, Ecole Nationale Vétérinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 03, France.

Search for other papers by Alain Regnier in
Current site
Google Scholar
PubMed
Close
 Dr Med Vet, PhD
,
Valérie Laroute INRA, UMR 792 Ingénierie des Systèmes Biologiques et des Procédés, LISB-INSA, 135 avenue de Rangueil, 31077 Toulouse Cedex 04, France.

Search for other papers by Valérie Laroute in
Current site
Google Scholar
PubMed
Close
 PhD
,
Anne Gautier-Bouchardon ANSES, Unité de Mycoplasmologie-Bactériologie, BP 53, 22440 Ploufragan, France.

Search for other papers by Anne Gautier-Bouchardon in
Current site
Google Scholar
PubMed
Close
 PhD
,
Véronique Gayrard UMR 181 Physiopathologie et Toxicologie Expérimentales, INRA, Ecole Nationale Vétérinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 03, France.

Search for other papers by Véronique Gayrard in
Current site
Google Scholar
PubMed
Close
 Dr Med Vet, PhD
,
Nicole Picard-Hagen UMR 181 Physiopathologie et Toxicologie Expérimentales, INRA, Ecole Nationale Vétérinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 03, France.

Search for other papers by Nicole Picard-Hagen in
Current site
Google Scholar
PubMed
Close
 Dr Med Vet, PhD
, and
Pierre-Louis Toutain UMR 181 Physiopathologie et Toxicologie Expérimentales, INRA, Ecole Nationale Vétérinaire, 23 chemin des Capelles, B.P. 87614, 31076 Toulouse Cedex 03, France.

Search for other papers by Pierre-Louis Toutain in
Current site
Google Scholar
PubMed
Close
 Dr Med Vet, PhD

Abstract

Objective—To measure florfenicol concentrations in ovine tear fluid after IM and SC administration and determine minimum inhibitory concentrations (MICs) of florfenicol against field isolates of Mycoplasma organisms potentially involved in infectious keratoconjunctivitis.

Animals—9 healthy adult Lacaune ewes.

Procedures—Animals received an IM and SC administration of florfenicol (20 mg/kg) in a 2-way crossover design. Samples of blood and tear fluid were collected before and for 24 hours after administration. Concentrations of florfenicol in plasma and tear fluid were measured via high-performance liquid chromatography. The MIC of florfenicol for various Mycoplasma strains cultured from sheep and goats was determined via an agar dilution method.

Results—Mean florfenicol concentration in tear fluid for the 24-hour period was significantly higher after IM administration (0.70 μg/mL) than after SC administration (0.22 μg/mL) and was maintained for a longer duration. The lacrimal fluid-to-plasma concentration ratio was not different between the 2 routes of administration, with mean values of 40.2% and 32.5% after IM and SC administration, respectively. The MIC for Mycoplasma agalactiae, Mycoplasma conjunctivae, and Mycoplasma mycoides isolates ranged from 0.5 to 8 μg of florfenicol/mL. Two strains of M agalactiae could be considered resistant to florfenicol.

Conclusions and Clinical Relevance—Florfenicol readily penetrated the preocular tear fluid of sheep after IM and SC administration. For both routes of administration, doses > 20 mg/kg would be necessary to achieve tear fluid concentrations of florfenicol greater than the MICs for most strains of Mycoplasma organisms.

Abstract

Objective—To measure florfenicol concentrations in ovine tear fluid after IM and SC administration and determine minimum inhibitory concentrations (MICs) of florfenicol against field isolates of Mycoplasma organisms potentially involved in infectious keratoconjunctivitis.

Animals—9 healthy adult Lacaune ewes.

Procedures—Animals received an IM and SC administration of florfenicol (20 mg/kg) in a 2-way crossover design. Samples of blood and tear fluid were collected before and for 24 hours after administration. Concentrations of florfenicol in plasma and tear fluid were measured via high-performance liquid chromatography. The MIC of florfenicol for various Mycoplasma strains cultured from sheep and goats was determined via an agar dilution method.

Results—Mean florfenicol concentration in tear fluid for the 24-hour period was significantly higher after IM administration (0.70 μg/mL) than after SC administration (0.22 μg/mL) and was maintained for a longer duration. The lacrimal fluid-to-plasma concentration ratio was not different between the 2 routes of administration, with mean values of 40.2% and 32.5% after IM and SC administration, respectively. The MIC for Mycoplasma agalactiae, Mycoplasma conjunctivae, and Mycoplasma mycoides isolates ranged from 0.5 to 8 μg of florfenicol/mL. Two strains of M agalactiae could be considered resistant to florfenicol.

Conclusions and Clinical Relevance—Florfenicol readily penetrated the preocular tear fluid of sheep after IM and SC administration. For both routes of administration, doses > 20 mg/kg would be necessary to achieve tear fluid concentrations of florfenicol greater than the MICs for most strains of Mycoplasma organisms.

Contributor Notes

Presented in abstract form at the 39th Annual Meeting of the American College of Veterinary Ophthalmologists, Boston, October 2008.

Address correspondence to Dr. Regnier (a.regnier@envt.fr).
  • 1. Hosie BD. Keratoconjunctivitis in a hill sheep flock. Vet Rec 1988; 122: 4043.

  • 2. Egwu GO, Faull WB, Bradbury JM, et al. Ovine infectious keratoconjunctivitis: a microbiological study of clinically unaffected and affected sheep's eyes with special reference to Mycoplasma conjunctivae. Vet Rec 1989; 125: 253256.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Jones GE. Infectious keratoconjunctivitis. In: Martin WB, Aitken ID, eds. Diseases of sheep. 2nd ed. London: Blackwell Scientific Publications, 1991;280283.

    • Search Google Scholar
    • Export Citation
  • 4. Baas EJ, Trotter SL, Franklin RM, et al. Epidemic caprine keratoconjunctivitis: recovery of Mycoplasma conjunctivae and its possible role in pathogenesis. Infect Immun 1977; 18: 806815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Giacometti M, Janosvky M, Belloy L, et al. Infectious keratoconjunctivitis of ibex, chamois and other caprinae. Rev Sci Tech 2002; 21: 335345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Dziezyc J, Millichamp NJ. Infectious ocular diseases. In: Smith BP, ed. Large animal internal medicine. 3rd ed. St Louis: Mosby, 2002;11641182.

    • Search Google Scholar
    • Export Citation
  • 7. Radostits OM, Gay CC, Hindchcliff KW, et al. Diseases of the skin, conjunctiva, and external ears. In: Radostits OM, Gay CC, Hinchcliff KW, et al. Veterinary medicine. A textbook of the diseases of cattle, horses, sheep, pigs and goats. 10th ed. Edinburgh: Saunders Elsevier; 2007;651671.

    • Search Google Scholar
    • Export Citation
  • 8. Whittaker CJG, Gelatt KN, Wilkie DA. Food animal ophthalmology. In: Gelatt KN, ed. Veterinary ophthalmology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 1991;11171176.

    • Search Google Scholar
    • Export Citation
  • 9. Naglic T, Hajsig D, Frey J, et al. Epidemiologic and microbiological study of an outbreak of infectious keratoconjunctivitis in sheep. Vet Rec 2000; 147: 7275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Jones GE, Foggie A, Sutherland A, et al. Mycoplasmas and ovine keratoconjunctivitis. Vet Rec 1976; 99: 137141.

  • 11. Ter Laak EA, Schreuder BEC, Kimman TG, et al. Ovine kerato-conjunctivitis experimentally induced by inoculation of Mycoplasma conjunctivae. Vet Q 1988; 10: 217224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12. Van Halderen A, Van Rensburg WJJ, Geyer A, et al. The identification of Mycoplasma conjunctivae as an aetiological agent of infectious keratoconjunctivitis of sheep in South Africa. Onderstepoort J Vet Res 1994; 61: 231237.

    • Search Google Scholar
    • Export Citation
  • 13. Nicolet J, Freundt EA. Isolation of Mycoplasma conjunctivae from chamois and sheep affected with kerato-conjunctivitis. Zentralbl Veterinarmed B 1975; 22: 302307.

    • Search Google Scholar
    • Export Citation
  • 14. Dagnall GJR. The role of Branhamella ovis, Mycoplasma conjunctivae and Chlamydia psittaci in conjunctivitis of sheep. Br Vet J 1994; 150: 6571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Motha MXJ, Frey J, Hansen MF, et al. Detection of Mycoplasma conjunctivae in sheep affected with conjunctivitis and infectious keratoconjunctivitis. N Z Vet J 2003; 51: 186190.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Rodriguez JL, Poveda JB, Rodriguez F, et al. Ovine infectious keratoconjunctivitis caused by Mycoplasma agalactiae. Small Rumin Res 1996; 22: 9396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17. Nouws JFM, König CDW. Penetration of some antibiotics into the lacrimal fluid of sheep. Vet Q 1983; 5: 114121.

  • 18. König CDW. “Pink eye” or “zere oogies” or keratoconjunctivitis infectiosa ovis (KIO). Clinical efficacy of a number of antimicrobial therapies. Vet Q 1983; 5: 122127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Neu HC, Fu KP. In vitro activity of chloramphenicol and thiamphenicol analogs. Antimicrob Agents Chemother 1980; 18: 311316.

  • 20. Graham R, Palmer D, Pratt BC, et al. In vitro activity of florfenicol. Eur J Clin Microbiol Infect Dis 1988; 7: 691694.

  • 21. Ali BH, Al-Qarawi AA, Hashaad M. Comparative plasma pharmacokinetics and tolerance of florfenicol following intramuscular and intravenous administration to camels, sheep and goats. Vet Res Commun 2003; 27: 475483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22. Jianzhong S, Xiubo L, Haiyang J, et al. Bioavailability and pharmacokinetics of florfenicol in healthy sheep. J Vet Pharmacol Ther 2004; 27: 163168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Lane VM, Wetzlich S, Clifford A, et al. Intravenous and subcutaneous pharmacokinetics of florfenicol in sheep. J Vet Pharmacol Ther 2004; 27: 191196.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Bretzlaff KN, Neff-Davis CA, Ott RS, et al. Florfenicol in non-lactating dairy cows: pharmacokinetics, binding to plasma proteins, and effect on phagocytosis by blood neutrophils. J Vet Pharmacol Ther 1987; 10: 233240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Lobell RD, Varma KJ, Johnson JC, et al. Pharmacokinetics of florfenicol following intravenous and intramuscular doses to cattle. J Vet Pharmacol Ther 1994; 17: 253258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Monaco F, Mutani R, Mastropaolo C, et al. Tears as the best practical indicator of the unbound fraction of an anticonvulsant. Epilepsia 1979; 20: 705710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Van Haeringen NJ. Secretion of drugs in tears. Curr Eye Res 1985; 4: 485488.

  • 28. Dueger EL, Angelos JA, Cosgrove S, et al. Efficacy of florfenicol in the treatment of experimentally induced infectious bovine keratoconjunctivitis. Am J Vet Res 1999; 60: 960964.

    • Search Google Scholar
    • Export Citation
  • 29. Angelos JA, Dueger EL, George LW, et al. Efficacy of florfenicol for treatment of naturally occurring IBK. J Am Vet Med Assoc 2000; 216: 6264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30. Gokce HI, Mehmet C, Genc O, et al. A comparison of the efficacy of florfenicol and oxytetracycline in the treatment of naturally occurring infectious bovine keratoconjunctivitis. Irish Vet J 2002; 55: 573576.

    • Search Google Scholar
    • Export Citation
  • 31. Tang-Liu D, Schwob DL, Usansky JI, et al. Comparative tear concentrations over time of ofloxacin and tobramycin in human eyes. Clin Pharmacol Ther 1994; 55: 284292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32. Akkan AG, Mutlu I, Özyazgan S, et al. Comparative tear concentrations of topically applied ciprofloxacin, ofloxacin, and norfloxacin in human eyes. Int J Clin Pharmacol Ther 1997; 35: 214217.

    • Search Google Scholar
    • Export Citation
  • 33. Small D, Hevy J, Tang-Liu D. Comparison of tear sampling techniques for pharmacokinetic analysis: ofloxacin concentrations in rabbit tears after sampling with Schirmer tear strips, capillary tubes, or surgical sponges. J Ocul Pharmacol 2000; 16: 439446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34. Friis NF. Selective isolation of slowly growing acidifying mycoplasmas from swine and cattle. Acta Vet Scand 1979; 20: 607609.

  • 35. Bébéar C, Robertson JA. Determination of minimal inhibitory concentration. In: Tully JG, Razin S, eds. Molecular and diagnostic procedures in mycoplasmology. Volume II: diagnostic procedures. New York: Academic Press, 1996;189197.

    • Search Google Scholar
    • Export Citation
  • 36. Hannan PCT. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary Mycoplasma species. Vet Res 2000; 31: 373395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37. George LW, Reina-Guerra M, Baggot JD, et al. Distribution of kanamycin in ocular tissues of calves. J Vet Pharmacol Ther 1986; 9: 183191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38. Woo FL, Johnson AP, Insler MS, et al. Gentamicin, tobramycin, amikacin, and netilmicin levels in tears following intravenous administration. Arch Ophthalmol 1985; 103: 216218.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39. George LW, Smith JA, Kaswan R. Distribution of oxytetracycline into ocular tissues and tears of calves. J Vet Pharmacol Ther 1985; 8: 4754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40. De Craene BA, Deprez P, D'Haese E, et al. Pharmacokinetics of florfenicol in cerebrospinal fluid and plasma of calves. Antimicrob Agents Chemother 1997; 41: 19911995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41. Pilo P, Fleury B, Marenda M, et al. Prevalence and distribution of the insertion element ISMagI in Mycoplasma agalactiae. Vet Microbiol 2003; 92: 3748.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42. Marenda MS, Sagné E, Poumarat F, et al. Suppression subtractive hybridization as a basis to asses Mycoplasma agalactiae and Mycoplasma bovis genomic diversity and species-specific sequences. Microbiology 2005; 151: 475489.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43. Rosenbuch RF, Kinyon JM, Apley M, et al. In vitro antimicrobial inhibition profiles of Mycoplasma bovis isolates recovered from various regions of the United States from 2002 to 2003. J Vet Diagn Invest 2005; 17: 436441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44. Ayling RD, Baker SE, Nicholas RAJ, et al. Comparison of in vitro activity of danofloxacin, florfenicol, oxytetracycline, spectinomycin and tilmicosin against Mycoplasma mycoides subspecies mycoides small colony type. Vet Rec 2000; 146: 243246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45. Kidanemariam A, Gouws J, van Vuuren M, et al. In vitro antimicrobial susceptibility of Mycoplasma mycoides mycoides large colony and Arcanobacterium pyogenes isolated from clinical cases of ulcerative balanitis and vulvitis in Dorper sheep in South Africa. J S Afr Vet Assoc 2005; 76: 204208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46. Al-Momani W, Nicholas RAJ, Janakat S, et al. The in vitro effect of six antimicrobials against Mycoplasma putrefaciens, Mycoplasma mycoides subsp. mycoides LC and Mycoplasma capricolum subsp. capricolum isolated from sheep and goats in Jordan. Trop Anim Health Prod 2006; 38: 17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47. Antunes NT, Tavío MM, Assunção P, et al. In vitro susceptibilities of field isolates of Mycoplasma agalactiae. Vet J 2008; 177: 436438.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 2nd ed. Approved standards. NCCLS document M31-A2. Wayne, Pa: National Committee for Clinical Laboratory Standards, 2002.

    • Search Google Scholar
    • Export Citation
  • 49. Toutain PL, Del Castillo JRE, Bousquet-Mélou A. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci 2002; 73: 105114.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement