Antinociceptive effects of long-acting nalbuphine decanoate after intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis)

David Sanchez-Migallon Guzman Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by David Sanchez-Migallon Guzman in
Current site
Google Scholar
PubMed
Close
 LV, MS
,
Jana M. Braun Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Jana M. Braun in
Current site
Google Scholar
PubMed
Close
 DVM, MPH
,
Paulo V. M. Steagall Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Paulo V. M. Steagall in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Nicholas S. Keuler Department of Statistics, College of Letters and Science, University of Wisconsin, Madison, WI 53706.

Search for other papers by Nicholas S. Keuler in
Current site
Google Scholar
PubMed
Close
 MS
,
Timothy D. Heath Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705.

Search for other papers by Timothy D. Heath in
Current site
Google Scholar
PubMed
Close
 PhD
,
Lisa A. Krugner-Higby Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Lisa A. Krugner-Higby in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Carolyn S. Brown Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Carolyn S. Brown in
Current site
Google Scholar
PubMed
Close
 BS
, and
Joanne R. Paul-Murphy Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Joanne R. Paul-Murphy in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—10 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (33.7 mg/kg) or saline (0.9% NaCl) solution was administered IM in a randomized complete crossover experimental design (periods 1 and 2). Foot withdrawal threshold to a noxious thermal stimulus was used to evaluate responses. Baseline thermal withdrawal threshold was recorded 1 hour before drug or saline solution administration, and thermal foot withdrawal threshold measurements were repeated 1, 2, 3, 6, 12, 24, 48, and 72 hours after drug administration.

Results—Nalbuphine decanoate administered IM at a dose of 33.7 mg/kg significantly increased thermal foot withdrawal threshold, compared with results after administration of saline solution during period 2, and also caused a significant change in withdrawal threshold for up to 12 hours, compared with baseline values.

Conclusions and Clinical Relevance—Nalbuphine decanoate increased the foot withdrawal threshold to a noxious thermal stimulus in Hispaniolan Amazon parrots for up to 12 hours and provided a longer duration of action than has been reported for other nalbuphine formulations. Further studies with other types of nociceptive stimulation, dosages, and dosing intervals as well as clinical trials are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds.

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—10 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (33.7 mg/kg) or saline (0.9% NaCl) solution was administered IM in a randomized complete crossover experimental design (periods 1 and 2). Foot withdrawal threshold to a noxious thermal stimulus was used to evaluate responses. Baseline thermal withdrawal threshold was recorded 1 hour before drug or saline solution administration, and thermal foot withdrawal threshold measurements were repeated 1, 2, 3, 6, 12, 24, 48, and 72 hours after drug administration.

Results—Nalbuphine decanoate administered IM at a dose of 33.7 mg/kg significantly increased thermal foot withdrawal threshold, compared with results after administration of saline solution during period 2, and also caused a significant change in withdrawal threshold for up to 12 hours, compared with baseline values.

Conclusions and Clinical Relevance—Nalbuphine decanoate increased the foot withdrawal threshold to a noxious thermal stimulus in Hispaniolan Amazon parrots for up to 12 hours and provided a longer duration of action than has been reported for other nalbuphine formulations. Further studies with other types of nociceptive stimulation, dosages, and dosing intervals as well as clinical trials are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds.

Contributor Notes

Dr. Steagall's present address is Rua Cel Mello de Oliveira, 579, Sao Paulo-SP, Brazil.

Supported by a grant from the Morris Animal Foundation (grant No. D08ZO-093).

Address correspondence to Dr. Guzman (guzman@ucdavis.edu).
  • 1. Sanchez-Migallon Guzman D, KuKanich B, Keuler NS, et al. Antinociceptive effects of nalbuphine hydrochloride in Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2011; 72: 736740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Paul-Murphy JR, Sladky KK, Krugner-Higby LA, et al. Analgesic effects of carprofen and liposome-encapsulated butorphanol tartrate in Hispaniolan parrots (Amazona ventralis) with experimentally induced arthritis. Am J Vet Res 2009; 70: 12011210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Paul-Murphy JR, Krugner-Higby LA, Tourdot RL, et al. Evaluation of liposome-encapsulated butorphanol tartrate for alleviation of experimentally induced arthritic pain in green-cheeked conures (Pyrrhura molinae). Am J Vet Res 2009; 70: 12111219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Sladky KK, Krugner-Higby L, Meek-Walker E, et al. Serum concentrations and analgesic effects of liposome-encapsulated and standard butorphanol tartrate in parrots. Am J Vet Res 2006; 67: 775781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Buchwalder T, Huber-Eicher B. Effect of the analgesic butorphanol on activity behaviour in turkeys (Meleagris gallopavo). Res Vet Sci 2005; 79: 239244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Paul-Murphy JR, Brunson DB, Miletic V. Analgesic effects of butorphanol and buprenorphine in conscious African grey parrots (Psittacus erithacus erithacus and Psittacus erithacus timneh). Am J Vet Res 1999; 60: 12181221.

    • Search Google Scholar
    • Export Citation
  • 7. Curro TG, Brunson DB, Paul-Murphy J. Determination of the ED50 of isoflurane and evaluation of the analgesic properties of butorphanol in cockatoos (Cacatua spp.). Vet Surg 1994; 23: 429433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Sanchez-Migallon Guzman D, Flammer K, Paul-Murphy JR, et al. Pharmacokinetics of butorphanol after oral, intravenous and intramuscular administration in Hispaniolan Amazon parrots (Amazona ventralis). J Avian Med Surg 2011; 25: 185191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Keller DL, Sanchez-Migallon Guzman D, Klauer JM, et al. Pharmacokinetics of nalbuphine hydrochloride after intravenous and intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2011; 72: 741745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Liu KS, Hu OY, Ho ST, et al. Antinociceptive effect of a novel long-acting nalbuphine preparation. Br J Anaesth 2004; 92: 712715.

  • 11. Chu KS, Wang JJ, Hu OY, et al. The antinociceptive effect of nalbuphine and its long-acting esters in rats. Anesth Analg 2003; 97: 806809.

    • Search Google Scholar
    • Export Citation
  • 12. Ho ST, Wang JJ, Hu OY, et al. The antinociceptive effect of a long-acting nalbuphine preparation in rabbits. Acta Anaesthesiol Sin 2003; 41: 99103.

    • Search Google Scholar
    • Export Citation
  • 13. AVMA. Use of placebo controls in assessment of new therapies for alleviation of acute pain in client-owned animals. Available at: www.avma.org/KB/Policies/Pages/Use-of-Placebo-Controls-in-Assessment-of-New-Therapies-for-Alleviation-of-Acute-Pain-in-Client-Owned-Animals.aspx. Accessed Sep 23, 2012.

    • Search Google Scholar
    • Export Citation
  • 14. Aungst BJ, Myers MJ, Shefter E, et al. Prodrugs for improved oral nalbuphine bioavailability: inter-species differences in the disposition of nalbuphine and its acetylsalicylate and anthranilate esters. Int J Pharm 1987; 38: 199209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Sanchez-Migallon Guzman D, KuKanich BJ, Heath T, et al. Pharmacokinetics of long-acting nalbuphine decanoate after intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2013; 74: 191195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16. Paul-Murphy JR, Brunson DB, Miletic V. A technique for evaluating analgesia in conscious perching birds. Am J Vet Res 1999; 60: 12131217.

    • Search Google Scholar
    • Export Citation
  • 17. Pallasch TJ, Gill CJ. Butorphanol and nalbuphine: a pharmacologic comparison. Oral Surg Oral Med Oral Pathol 1985; 59: 1520.

  • 18. Souza MJ, Sanchez-Migallon Guzman D, Paul-Murphy JR, et al. Pharmacokinetics after oral and intravenous administration of a single dose of tramadol hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2012; 73: 11421147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19. Hoppes S, Flammer K, Hoersch K, et al. Disposition and analgesic effects of fentanyl in the umbrella cockatoo (Cacatua alba). J Avian Med Surg 2003; 17: 124130.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20. Le Bars D, Gozariu M, Cadden SW. Animal models of nociception. Pharmacol Rev 2001; 53: 597652.

  • 21. Machin KL. Avian pain: physiology and evaluation. Compend Contin Educ Pract Vet 2005; 27: 98109.

  • 22. Mogil JS, Ritchie J, Smith SB, et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans. J Med Genet 2005; 42: 583587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23. Wilson SG, Smith SB, Chesler EJ, et al. The heritability of antinociception: common pharmacogenetic mediation of five neurochemically distinct analgesics. J Pharmacol Exp Ther 2003; 304: 547559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24. Mogil JS, Chesler EJ, Wilson SG, et al. Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neurosci Biobehav Rev 2000; 24: 375389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25. Mogil JS. The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proc Natl Acad Sci U S A 1999; 96: 77447751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26. Gear RW, Miaskowski C, Gordon NC, et al. The kappa opioid nalbuphine produces gender- and dose-dependent analgesia and antianalgesia in patients with postoperative pain. Pain 1999; 83: 339345.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27. Bailey PL, Egan TD, Stanley TH. Intravenous opioid anesthetics. In: Miller RD, ed. Anesthesia. 5th ed. Philadelphia: Churchill Livingstone, 2000;273376.

    • Search Google Scholar
    • Export Citation

Advertisement