Pharmacokinetics of long-acting nalbuphine decanoate after intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis)

David Sanchez-Migallon Guzman Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by David Sanchez-Migallon Guzman in
Current site
Google Scholar
PubMed
Close
 LV, MS
,
Butch KuKanich Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by Butch KuKanich in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Timothy D. Heath Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705.

Search for other papers by Timothy D. Heath in
Current site
Google Scholar
PubMed
Close
 PhD
,
Lisa A. Krugner-Higby Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Lisa A. Krugner-Higby in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Steven A. Barker Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Steven A. Barker in
Current site
Google Scholar
PubMed
Close
 PhD
,
Carolyn S. Brown Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Carolyn S. Brown in
Current site
Google Scholar
PubMed
Close
 BS
, and
Joanne R. Paul-Murphy Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Joanne R. Paul-Murphy in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To evaluate the pharmacokinetics of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—9 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (37.5 mg/kg) was administered IM to all birds. Plasma samples were obtained from blood collected before (time 0) and 0.25, 1, 2, 3, 6, 12, 24, 48, and 96 hours after drug administration. Plasma samples were used for measurement of nalbuphine concentrations via liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated with computer software.

Results—Plasma concentrations of nalbuphine increased rapidly after IM administration, with a mean concentration of 46.1 ng/mL at 0.25 hours after administration. Plasma concentrations of nalbuphine remained > 20 ng/mL for at least 24 hours in all birds. The maximum plasma concentration was 109.4 ng/mL at 2.15 hours. The mean terminal half-life was 20.4 hours.

Conclusions and Clinical Relevance—In Hispaniolan Amazon parrots, plasma concentrations of nalbuphine were prolonged after IM administration of nalbuphine decanoate, compared with previously reported results after administration of nalbuphine hydrochloride. Plasma concentrations that could be associated with antinociception were maintained for 24 hours after IM administration of 37.5 mg of nalbuphine decanoate/kg. Safety and analgesic efficacy of nalbuphine treatments in this species require further investigation to determine the potential for clinical use in pain management in psittacine species.

Abstract

Objective—To evaluate the pharmacokinetics of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—9 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (37.5 mg/kg) was administered IM to all birds. Plasma samples were obtained from blood collected before (time 0) and 0.25, 1, 2, 3, 6, 12, 24, 48, and 96 hours after drug administration. Plasma samples were used for measurement of nalbuphine concentrations via liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated with computer software.

Results—Plasma concentrations of nalbuphine increased rapidly after IM administration, with a mean concentration of 46.1 ng/mL at 0.25 hours after administration. Plasma concentrations of nalbuphine remained > 20 ng/mL for at least 24 hours in all birds. The maximum plasma concentration was 109.4 ng/mL at 2.15 hours. The mean terminal half-life was 20.4 hours.

Conclusions and Clinical Relevance—In Hispaniolan Amazon parrots, plasma concentrations of nalbuphine were prolonged after IM administration of nalbuphine decanoate, compared with previously reported results after administration of nalbuphine hydrochloride. Plasma concentrations that could be associated with antinociception were maintained for 24 hours after IM administration of 37.5 mg of nalbuphine decanoate/kg. Safety and analgesic efficacy of nalbuphine treatments in this species require further investigation to determine the potential for clinical use in pain management in psittacine species.

All Time Past Year Past 30 Days
Abstract Views 108 0 0
Full Text Views 814 510 53
PDF Downloads 151 78 8
Advertisement