Pharmacokinetics of long-acting nalbuphine decanoate after intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis)

David Sanchez-Migallon Guzman Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by David Sanchez-Migallon Guzman in
Current site
Google Scholar
PubMed
Close
 LV, MS
,
Butch KuKanich Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by Butch KuKanich in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Timothy D. Heath Department of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, WI 53705.

Search for other papers by Timothy D. Heath in
Current site
Google Scholar
PubMed
Close
 PhD
,
Lisa A. Krugner-Higby Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Lisa A. Krugner-Higby in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Steven A. Barker Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Steven A. Barker in
Current site
Google Scholar
PubMed
Close
 PhD
,
Carolyn S. Brown Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706.

Search for other papers by Carolyn S. Brown in
Current site
Google Scholar
PubMed
Close
 BS
, and
Joanne R. Paul-Murphy Department of Veterinary Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616.

Search for other papers by Joanne R. Paul-Murphy in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To evaluate the pharmacokinetics of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—9 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (37.5 mg/kg) was administered IM to all birds. Plasma samples were obtained from blood collected before (time 0) and 0.25, 1, 2, 3, 6, 12, 24, 48, and 96 hours after drug administration. Plasma samples were used for measurement of nalbuphine concentrations via liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated with computer software.

Results—Plasma concentrations of nalbuphine increased rapidly after IM administration, with a mean concentration of 46.1 ng/mL at 0.25 hours after administration. Plasma concentrations of nalbuphine remained > 20 ng/mL for at least 24 hours in all birds. The maximum plasma concentration was 109.4 ng/mL at 2.15 hours. The mean terminal half-life was 20.4 hours.

Conclusions and Clinical Relevance—In Hispaniolan Amazon parrots, plasma concentrations of nalbuphine were prolonged after IM administration of nalbuphine decanoate, compared with previously reported results after administration of nalbuphine hydrochloride. Plasma concentrations that could be associated with antinociception were maintained for 24 hours after IM administration of 37.5 mg of nalbuphine decanoate/kg. Safety and analgesic efficacy of nalbuphine treatments in this species require further investigation to determine the potential for clinical use in pain management in psittacine species.

Abstract

Objective—To evaluate the pharmacokinetics of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—9 healthy adult Hispaniolan Amazon parrots of unknown sex.

Procedures—Nalbuphine decanoate (37.5 mg/kg) was administered IM to all birds. Plasma samples were obtained from blood collected before (time 0) and 0.25, 1, 2, 3, 6, 12, 24, 48, and 96 hours after drug administration. Plasma samples were used for measurement of nalbuphine concentrations via liquid chromatography–tandem mass spectrometry. Pharmacokinetic parameters were estimated with computer software.

Results—Plasma concentrations of nalbuphine increased rapidly after IM administration, with a mean concentration of 46.1 ng/mL at 0.25 hours after administration. Plasma concentrations of nalbuphine remained > 20 ng/mL for at least 24 hours in all birds. The maximum plasma concentration was 109.4 ng/mL at 2.15 hours. The mean terminal half-life was 20.4 hours.

Conclusions and Clinical Relevance—In Hispaniolan Amazon parrots, plasma concentrations of nalbuphine were prolonged after IM administration of nalbuphine decanoate, compared with previously reported results after administration of nalbuphine hydrochloride. Plasma concentrations that could be associated with antinociception were maintained for 24 hours after IM administration of 37.5 mg of nalbuphine decanoate/kg. Safety and analgesic efficacy of nalbuphine treatments in this species require further investigation to determine the potential for clinical use in pain management in psittacine species.

Contributor Notes

Supported by a grant from the Morris Animal Foundation (grant No. D08ZO-093).

Address correspondence to Dr. Guzman (guzman@ucdavis.edu).
  • 1. Sanchez-Migallon Guzman D, Flammer K, Paul-Murphy J, et al. Pharmacokinetics of butorphanol after oral, intravenous and intramuscular administration in Hispaniolan Amazon parrots (Amazona ventralis). J Avian Med Surg 2011; 25: 185191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2. Paul-Murphy JR, Sladky KK, Krugner-Higby LA, et al. Analgesic effects of carprofen and liposome-encapsulated butorphanol tartrate in Hispaniolan parrots (Amazona ventralis) with experimentally induced arthritis. Am J Vet Res 2009; 70: 12011210.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3. Paul-Murphy JR, Krugner-Higby LA, Tourdot RL, et al. Evaluation of liposome-encapsulated butorphanol tartrate for alleviation of experimentally induced arthritic pain in green-cheeked conures (Pyrrhura molinae). Am J Vet Res 2009; 70: 12111219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4. Sladky KK, Krugner-Higby L, Meek-Walker E, et al. Serum concentrations and analgesic effects of liposome-encapsulated and standard butorphanol tartrate in parrots. Am J Vet Res 2006; 67: 775781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5. Buchwalder T, Huber-Eicher B. Effect of the analgesic butorphanol on activity behaviour in turkeys (Meleagris gallopavo). Res Vet Sci 2005; 79: 239244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6. Paul-Murphy JR, Brunson DB, Miletic V. Analgesic effects of butorphanol and buprenorphine in conscious African grey parrots (Psittacus erithacus erithacus and Psittacus erithacus timneh). Am J Vet Res 1999; 60: 12181221.

    • Search Google Scholar
    • Export Citation
  • 7. Curro TG, Brunson DB, Paul-Murphy J. Determination of the ED50 of isoflurane and evaluation of the analgesic properties of butorphanol in cockatoos (Cacatua spp.). Vet Surg 1994; 23: 429433.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8. Sanchez-Migallon Guzman D, KuKanich B, Keuler NS, et al. Antinociceptive effects of nalbuphine hydrochloride in Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2011; 72: 736740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9. Keller DL, Sanchez-Migallon Guzman D, Klauer JM, et al. Pharmacokinetics of nalbuphine hydrochloride after intravenous and intramuscular administration to Hispaniolan Amazon parrots (Amazona ventralis). Am J Vet Res 2011; 72: 741745.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10. Liu KS, Hu OY, Ho ST, et al. Antinociceptive effect of a novel long-acting nalbuphine preparation. Br J Anaesth 2004; 92: 712715.

  • 11. Chu KS, Wang JJ, Hu OY, et al. The antinociceptive effect of nalbuphine and its long-acting esters in rats. Anesth Analg 2003; 97: 806809.

    • Search Google Scholar
    • Export Citation
  • 12. Ho ST, Wang JJ, Hu OY, et al. The antinociceptive effect of a long-acting nalbuphine preparation in rabbits. Acta Anaesthesiol Sin 2003; 41: 99103.

    • Search Google Scholar
    • Export Citation
  • 13. Aungst BJ, Myers MJ, Shefter E, et al. Prodrugs for improved oral nalbuphine bioavailability: inter-species differences in the disposition of nalbuphine and its acetylsalicylate and anthranilate esters. Int J Pharm 1987; 38: 199209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14. Leung GN, Leung DK, Wan TS, et al. High throughput screening of sub-ppb levels of basic drugs in equine plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2007; 1156: 271279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15. Ansel HC, Allen LV Jr, Popovich NG. Parenterals. In: Pharmaceutical dosage forms and drug delivery systems. 7th ed. Philadelphia: Lippincott Williams & Wilkins, 1999;397449.

    • Search Google Scholar
    • Export Citation
  • 16. Bailey PL, Egan TD, Stanley THJ. Intravenous opioid anesthetics. In: Miller RD, ed. Anesthesia. Philadelphia: Churchill Livingstone, 2000;273376.

    • Search Google Scholar
    • Export Citation
  • 17. Schmidt WK, Tam SW, Shotzberger GS, et al. Nalbuphine. Drug Alcohol Depend 1985; 14: 339362.

Advertisement