Rump JAScholmerich JGross V, et al. A new type of perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA) in active ulcerative colitis but not in Crohn's disease. Immunobiology 1990; 181:406–413.
Radice ASinico RA. Antineutrophilic cytoplasmic antibodies (ANCA). Autoimmunity 2005; 38:93–103.
Hagen ECDaha MRHermans J, et al. Diagnostic value of standardized assays for anti-neutrophil cytoplasmic antibodies in idiopathic systemic vasculitis. EC/BCR Project for ANCA Assay Standardization. Kidney Int 1998; 53:743–753.
Choi HKLiu SMerkel PA, et al. Diagnostic performance of antineutrophil cytoplasmic antibody tests for idiopathic vasculitides: metaanalysis with a focus on antimyeloperoxidase antibodies. J Rheumatol 2001; 28:1584–1590.
Gross WL. Aniteutrophil cytoplasmic autoantibody testing in vasculitides. Rheum Dis Clin North Am 1995; 21:987–1011.
Falk RJHogan SCarey TS, et al. Clinical course of anti-neutrophil cytoplasmic autoantibody–associated glomerulonephritis and systemic vasculitis. Ann Intern Med 1990; 113:656–663.
Homsak EMicetic-Turk DBozic B. Autoantibodies pANCA, GAB and PAB in inflammatory bowel disease: prevalence, characteristics and diagnostic value. Wien Klin Wochenschr 2010; 122(suppl 2):19–25.
Anand VRussell ASTsuyuki R, et al. Perinuclear antineutrophil cytoplasmic autoantibodies and anti–Saccharomyces cerevisiae antibodies as serological markers are not specific in the identification of Crohn's disease and ulcerative colitis. Can J Gastroenterol 2008; 22:33–36.
Allenspach KLomas BWieland B, et al. Evaluation of perinuclear anti-neutrophilic cytoplasmic autoantibodies as an early marker of protein-losing enteropathy and protein-losing nephropathy in Soft Coated Wheaten Terriers. Am J Vet Res 2008; 69:1301–1304.
Jaskowski TDLitwin CAHill HR. Analysis of serum antibodies in patients suspected of having inflammatory bowel disease. Clin Vaccine Immunol 2006; 13:655–660.
Luckschander NAllenspach KHall J, et al. Perinuclear anti-neutrophilic cytoplasmic antibody and response to treatment in diarrheic dogs with food responsive disease or inflammatory bowel disease. J Vet Intern Med 2006; 20:221–227.
Mokrowiecka AGasiorowska AMalecka-Panas E. pANCA and ASCA in the diagnosis of different subtypes of inflammatory bowel disease. Hepatogastroenterology 2007; 54:1443–1448.
Allenspach KLuckschander NStyner M, et al. Evaluation of assays for perinuclear antineutrophilic cytoplasmic antibodies and antibodies to Saccharomyces cerevisiae in dogs with inflammatory bowel disease. Am J Vet Res 2004; 65:1279–1283.
Mancho CRodriguez-Franco FGarcia-Sancho M, et al. Detection of anti-neutrophil cytoplasmic antibodies (ANCA) in serum from dogs with inflammatory bowel disease. Clin Vet Pequenos Anim 2007; 27:121–126.
Nakamura RMBarry M. Serologic markers in inflammatory bowel disease (IBD). MLO Med Lab Obs 2001; 33:8–19.
Hirai YIyoda MShibata T, et al. Lupus nephritis associated with positive MPO-ANCA in a patient with underlying autoimmune hemolytic anemia. Clin Exp Nephrol 2008; 12:393–397.
Ohhashi JMiyamoto MIshikawa S, et al. Crescentic glomerulonephritis with positive antineutrophil cytoplasmic autoantibody specific for myeloperoxidase associated with autoimmune hemolytic anemia and thrombocytopenic purpura. Intern Med 2000; 39:650–654.
Hirokawa M. Paraneoplastic autoimmune disorders. Gan To Kagaku Ryoho 2010; 37:980–983.
Faruqi SKastelik JAMcGivem DV. Diagnostic pitfall: Mycobacterium avium complex pulmonary infection and positive ANCA. Eur J Intern Med 2008; 19:216–218.
Teixeira LMahr AJaureguy F, et al. Low seroprevalence and poor specificity of antineutrophil cytoplasmic antibodies in tuberculosis. Rheumatology 2005; 44:247–250.
Flores-Suarez LFCabiedes JVilla AR, et al. Prevalence of anti-neutrophil cytoplasmic autoantibodies in patients with tuberculosis. Rheumatology 2003; 42:223–229.
Holmes AHGreenough TCBalady GJ, et al. Bartonella henselae endocarditis in an immunecompetent adult. Clin Infect Dis 1995; 21:1004–1007.
Brahn EPegues DAYao QP, et al. Mucocutaneous leishmaniasis masquerading as Wegener granulomatosis. J Clin Rheumatol 2010; 16:125–128.
Sugiyama HSahara MImai Y, et al. Infective endocarditis by Bartonella quintana masquerading as antineutrophil cytoplasmic antibody-associated small vessel vasculitis. Cardiology 2009; 114:208–211.
Smith BETompkins MBBreitschwerdt EB. Antinuclear antibodies can be detected in dog sera reactive to Bartonella vinsonii subsp berkhoffii, Ehrlichia canis, or Leishmania infantum antigens. J Vet Intern Med 2004; 18:47–51.
Ciaramella POliva GDeLuna R, et al. A retrospective clinical study of canine leishmaniasis in 150 dogs naturally infected by Leishmania infantum. Vet Rec 1997; 141:539–543.
Henn JBLiu CHKasten RW, et al. Seroprevalence of antibodies against Bartonella species and evaluation of risk factors and clinical signs associated with seropositivity in dogs. Am J Vet Res 2005; 66:688–694.
Overmann JASharkey LCWeiss DJ, et al. Performance of 2 microtiter canine Coombs' tests. Vet Clin Pathol 2007; 36:179–183.
Solano-Gallego LLlull JOsso M, et al. A serological study of exposure to arthropod-borne pathogens in dogs from northeastern Spain. Vet Res 2006; 37:231–244.
Gerber BHaug KEichenberger S, et al. Comparison of a rapid immunoassay for antibodies to the C6 antigen with conventional tests for antibodies to Borrelia burgdorferi in dogs in Europe. Vet Rec 2009; 165:594–597.
Riera CValladares JEGallego M, et al. Serological and parasitological follow-up in dogs experimentally infected with Leishmania infantum and treated with meglumine antimoniate. Vet Parasitol 1999; 84:33–47.
Katrib ASturgess ABertouch JV. Systemic sclerosis and antineutrophil cytoplasmic autoantibady-associated renal failure. Rheumatol Int 1999; 19:61–63.
Spornk PEBootsma HHorst G, et al. Antineutrophil cytoplasmic antibodies in systemic lupus erythematosus. Rheumatology 1996; 35:625–631.
Hochman JA. Autoimmune hemolytic anemia associated with Crohn's disease. Inflamm Bowel Dis 2002; 8:98–100.
Carr APPanciera DLKidd L. Prognostic factors for mortality and thromboembolism in canine immune-mediated hemolytic anemia: a retrospective study of 72 dogs. J Vet Intern Med 2002; 16:504–509.
Breitschwerdt EBBlann KRStebbins ME, et al. Clinicopathological abnormalities and treatment response in 24 dogs seroreactive to Bartonella vinsonii (berkhoffii) antigens. J Am Anim Hosp Assoc 2004; 40:92–101.
Goodman RABreitschwerdt EB. Clinicopathologic findings in dogs seroreactive to Bartonella henselae antigens. Am J Vet Res 2005; 66:2060–2064.
Gionchetti PVecchi MRizzello F, et al. Lack of effect of anti-neutrophil cytoplasmic antibodies associated with ulcerative colitis on superoxide anion production from neutrophils. Gut 1997; 40:102–104.
Schultz HSchinke SMosier K, et al. BPI-ANCA of pediatric cystic fibrosis patients can impair BPI-mediated killing of E. coli DH5 alpha in vitro. Pediatr Pulmonol 2004; 37:158–164.
Schinke SFellermann KHerlyn K, et al. Autoantibodies against the bactericidal/permeability-increasing protein from inflammatory bowel disease patients can impair the antibiotic activity of bactericidal/permeability-increasing protein. Inflamm Bowel Dis 2004; 10:763–770.
Cohavy OBruckner DGordon LK, et al. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 2000; 68:1542–1548.
Zhao MHJones SJLockwood CM. Bacterial permeability-increasing protein (PBI) is an important antigen of antineutrophil cytoplasmic autoantibodies (ANCA) in vasculitis. Clin Exp Immunol 1995; 99:49–56.
Vonandrian UHChambers JDMcEvoy LM, et al. 2-step model of leukocyte endothelial-cell interaction in inflammation-distinct roles for lECAM-1 and the leukocyte beta 2 intergrins in vivo. Proc Natl Acad Sci U S A 1991; 88:7538–7542.
Fiebig ELey KArfors KE. Rapid leukocyte accumulation by spontaneous rolling and adhesion in the exteriorised rabbit mesentery. Int J Microcirc Clin Exp 1991; 10:127–144.
Hickey MJKubes P. Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol 2009; 9:364–375.
McKay DM. Bacterial superantigens: provocateurs of gut dysfunction and inflammation? Trends Immunol 2001; 22:497–501.
Dalwadi HWei BKronenberg M, et al. The Crohn's disease-associated bacterial protein I2 is a novel enteric T cell superantigen. Immunity 2001; 15:149–158.
Reumaux DDuthilleul PRoos D. Pathogenesis of diseases associated with antineutrophil cytoplasm autoantibodies. Hum Immunol 2004; 65:1–12.
Utz PJAnderson P. Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis Rheum 1998; 41:1152–1160.
Bell EKChugh SSCook WJ. A case of infection-associated antiproteinase-3-negative cytoplasmic antineutrophil cytoplasmic antibody pauci-immune focal necrotizing glomerulonephritis. Nephrol Dial Transplant 2010; 25:3119–3123.
Alvar JCanavate CMolina R, et al. Canine leishmaniasis. Adv Parasitol 2004; 57:1–88.
Otranto DTestini GDantas-Torres F, et al. Diagnosis of canine vector-borne diseases in young dogs: a longitudinal study. J Clin Microbiol 2010; 48:3316–3324.
Pappalardo BLCorrea MTYork CC, et al. Epidemiologic evaluation of the risk factors associated with exposure and seroreactivity to Bartonella vinsonii in dogs. Am J Vet Res 1997; 58:467–471.
Henn JBVanhorn BAKasten RW, et al. Short report: antibodies to Bartonella vinsonii subsp berkhoffii in Moroccan dogs. Am J Trop Med Hyg 2006; 74:222–223.
Breitschwerdt EBAtkins CEBrown TT, et al. Bartonella vinsonii subsp berkhoffi and related members of the alpha subdivision of the Proteobacteria in dogs with cardiac arrhythmias, endocarditis, or myocarditis. J Clin Microbiol 1999; 37:3618–3626.
Riding AMD'Cruz DP. A case of mistaken identity: subacute bacterial endocarditis associated with p-antineutrophil cytoplasmic antibody [published online ahead of print Dec 15, 2010]. BMJ Case Rep doi:10.1136/bcr.09.2010.3299.
Frank JRBreitschwerdt EB. A retrospective study of ehrlichiosis in 62 dogs from North Carolina and Virginia. J Vet Intern Med 1999; 13:194–201.
Waner THarrus SWeiss DJ, et al. Demonstration of serum antiplatelet antibodies in experimental acute canine ehrlichiois. Vet Immunol Immunopathol 1995; 48:177–182.
Harrus SWaner TWeiss DJ, et al. Kinetics of serum antiplatelet antibodies in experimental acute canine ehrlichiosis. Vet Immunol Immunopathol 1996; 51:13–20.
Cortese LTerrazzano GPiantedosi D, et al. Prevalence of antiplatelet antibodies in dogs naturally co-infected by Leishmania infantum and Ehrlichia canis. Vet J 2011; 188:118–121.
Agut ACorzo NMurciano J, et al. Clinical and radiographic study of bone and joint lesions in 26 dogs with leishmaniasis. Vet Rec 2003; 153:648–652.
Vamvakidis CDKoutinas AFKanakoudis G, et al. Masticatory and skeletal muscle myositis in canine leishmaniasis (Leishmania infantum). Vet Rec 2000; 146:698–703.
Koutinas AFPolizopoulou ZSSaridomichelakis MN, et al. Clinical considerations on canine visceral leishmaniasis in Greece: a retrospective study of 158 cases (1989–1996). J Am Anim Hosp Assoc 1999; 35:376–383.
Breitschwerdt EBKordick DLMalarkey DE, et al. Endocarditis in a dog due to infection with a novel Bartonella subspecies. J Clin Microbiol 1995; 33:154–160.
Advertisement
Objective—To determine the prevalence of perinuclear antineutrophil cytoplasmic autoantibodies (pANCA) in dogs with confirmed or suspected immune-mediated hemolytic anemia (IMHA) or dogs infected with various vector-borne pathogens, including Rickettsia rickettsii, Bartonella henselae, Bartonella vinsonii subsp berkhoffii, Ehrlichia canis, Borrelia burgdorferi, and Leishmania infantum.
Animals—55 dogs with confirmed or suspected IMHA, 140 dogs seroreactive for vector-borne pathogens, and 62 healthy dogs and dogs seronegative for vector-borne pathogens.
Procedures—Samples were allocated to subgroups on the basis of the health status of the dogs and the degree of seroreactivity against various vector-borne pathogens. Serum samples were tested retrospectively via indirect immunofluorescence assay to determine pANCA status.
Results—26 of 55 (47%) dogs with confirmed or suspected IMHA and 67 of 140 (48%) dogs seroreactive for vector-borne pathogens had positive results when tested for pANCA. Serum samples with the highest antibody concentrations against L infantum antigen had the highest proportion (28/43 [65%]) that were positive for pANCA. One of 20 (5%) dogs seronegative for tick-borne pathogens and 8 of 22 (36%) dogs seronegative for L infantum had positive results for pANCA. One of 20 (5%) healthy dogs had serum antibodies against pANCA.
Conclusions and Clinical Relevance—pANCA were detected in a high percentage of dogs with IMHA and vector-borne infectious diseases. Therefore, pANCA may be a relatively nonspecific marker for dogs with inflammatory bowel disease, although they could represent a biomarker for immune-mediated diseases and infections.
Dr. Karagianni's present address is Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland.
This manuscript represents a portion of a thesis submitted by the first author to the Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London as partial fulfilment of the requirements for a Master of Research degree.