Effect of omega-3 polyunsaturated fatty acids and body condition on serum concentrations of adipokines in healthy dogs

Michal Mazaki-Tovi Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.

Search for other papers by Michal Mazaki-Tovi in
Current site
Google Scholar
PubMed
Close
 DVM
,
Sarah K. Abood Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.

Search for other papers by Sarah K. Abood in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Patricia A. Schenck Department of Pathobiology and Diagnostic Investigation, Diagnostic Center for Population and Animal Health, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824.

Search for other papers by Patricia A. Schenck in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine associations between serum concentrations of omega-3 polyunsaturated fatty acids or body condition and serum concentrations of adiponectin, leptin, insulin, glucose, or triglyceride in healthy dogs.

Animals—62 healthy adult client-owned dogs.

Procedures—Body condition score and percentage of body fat were determined. Blood samples were collected after food was withheld for 12 hours. Serum was harvested for total lipid determination, fatty acid analysis, and measurement of serum concentrations of adiponectin, leptin, insulin, glucose, and triglyceride. Associations between the outcome variables (adiponectin, leptin, insulin, glucose, and triglyceride concentrations) and each of several variables (age, sex, percentage of body fat, and concentrations of total lipid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) were determined.

Results—Serum concentrations of docosapentaenoic acid were significantly positively associated with concentrations of adiponectin and leptin and negatively associated with concentrations of triglyceride. Serum concentrations of α-linolenic acid were significantly positively associated with concentrations of triglyceride. No significant associations were detected between serum concentrations of eicosapentaenoic acid or docosahexaenoic acid and any of the outcome variables. Percentage of body fat was significantly positively associated with concentrations of leptin, insulin, and triglyceride but was not significantly associated with adiponectin concentration. Age was positively associated with concentrations of leptin, insulin, and triglyceride and negatively associated with concentrations of adiponectin. Sex did not significantly affect serum concentrations for any of the outcome variables.

Conclusions and Clinical Relevance—Docosapentaenoic acid may increase serum concentrations of adiponectin and leptin and decrease serum triglyceride concentration in healthy dogs.

Abstract

Objective—To determine associations between serum concentrations of omega-3 polyunsaturated fatty acids or body condition and serum concentrations of adiponectin, leptin, insulin, glucose, or triglyceride in healthy dogs.

Animals—62 healthy adult client-owned dogs.

Procedures—Body condition score and percentage of body fat were determined. Blood samples were collected after food was withheld for 12 hours. Serum was harvested for total lipid determination, fatty acid analysis, and measurement of serum concentrations of adiponectin, leptin, insulin, glucose, and triglyceride. Associations between the outcome variables (adiponectin, leptin, insulin, glucose, and triglyceride concentrations) and each of several variables (age, sex, percentage of body fat, and concentrations of total lipid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid) were determined.

Results—Serum concentrations of docosapentaenoic acid were significantly positively associated with concentrations of adiponectin and leptin and negatively associated with concentrations of triglyceride. Serum concentrations of α-linolenic acid were significantly positively associated with concentrations of triglyceride. No significant associations were detected between serum concentrations of eicosapentaenoic acid or docosahexaenoic acid and any of the outcome variables. Percentage of body fat was significantly positively associated with concentrations of leptin, insulin, and triglyceride but was not significantly associated with adiponectin concentration. Age was positively associated with concentrations of leptin, insulin, and triglyceride and negatively associated with concentrations of adiponectin. Sex did not significantly affect serum concentrations for any of the outcome variables.

Conclusions and Clinical Relevance—Docosapentaenoic acid may increase serum concentrations of adiponectin and leptin and decrease serum triglyceride concentration in healthy dogs.

All Time Past Year Past 30 Days
Abstract Views 55 0 0
Full Text Views 1591 1187 251
PDF Downloads 323 163 19
Advertisement