Evaluation of the aqueous humor flow rate in the eyes of clinically normal cats by use of fluorophotometry

William R. Crumley Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by William R. Crumley in
Current site
Google Scholar
PubMed
Close
 DVM
,
Amy J. Rankin Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by Amy J. Rankin in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Rachel A. Allbaugh Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506.

Search for other papers by Rachel A. Allbaugh in
Current site
Google Scholar
PubMed
Close
 DVM, MS

Abstract

Objective—To evaluate aqueous humor flow rate in the eyes of clinically normal cats by use of a noninvasive technique successfully used in other species.

Animals—20 domestic shorthair cats.

Procedures—1 drop of 10% fluorescein sodium was instilled into both eyes of 5 cats every 5 minutes until 3 drops had been administered. Fluorophotometry was performed at 2, 4, 5, 6, 7, 8, 9, and 10 hours after fluorescein application to monitor fluorescein removal and determine aqueous humor flow rate. The 3-drop protocol was used for the remaining 15 cats, and fluorophotometry was performed at 5, 6, 7, and 8 hours after fluorescein application. Aqueous humor flow rates were calculated manually by use of established equations with minor adjustments to constant values to reflect feline anatomic features. Correlation coefficients and slope ratios were calculated to assess the legitimacy of the flow rate data. Paired t tests were calculated to assess for differences between the right and left eyes.

Results—Mean ± SD calculated aqueous humor flow rate in the right, left, and both eyes of the 20 cats was 5.94 ± 2.30 μL/min, 5.05 ± 2.06 μL/min, and 5.51 ± 2.21 μL/min, respectively. Correlation coefficients and slope ratios revealed that the aqueous humor flow rates were accurate. No significant differences in values for the right and left eyes were detected.

Conclusions and Clinical Relevance—Accurate aqueous humor flow values for cats can be determined by use of the fluorophotometric technique evaluated in this study.

Abstract

Objective—To evaluate aqueous humor flow rate in the eyes of clinically normal cats by use of a noninvasive technique successfully used in other species.

Animals—20 domestic shorthair cats.

Procedures—1 drop of 10% fluorescein sodium was instilled into both eyes of 5 cats every 5 minutes until 3 drops had been administered. Fluorophotometry was performed at 2, 4, 5, 6, 7, 8, 9, and 10 hours after fluorescein application to monitor fluorescein removal and determine aqueous humor flow rate. The 3-drop protocol was used for the remaining 15 cats, and fluorophotometry was performed at 5, 6, 7, and 8 hours after fluorescein application. Aqueous humor flow rates were calculated manually by use of established equations with minor adjustments to constant values to reflect feline anatomic features. Correlation coefficients and slope ratios were calculated to assess the legitimacy of the flow rate data. Paired t tests were calculated to assess for differences between the right and left eyes.

Results—Mean ± SD calculated aqueous humor flow rate in the right, left, and both eyes of the 20 cats was 5.94 ± 2.30 μL/min, 5.05 ± 2.06 μL/min, and 5.51 ± 2.21 μL/min, respectively. Correlation coefficients and slope ratios revealed that the aqueous humor flow rates were accurate. No significant differences in values for the right and left eyes were detected.

Conclusions and Clinical Relevance—Accurate aqueous humor flow values for cats can be determined by use of the fluorophotometric technique evaluated in this study.

All Time Past Year Past 30 Days
Abstract Views 24 0 0
Full Text Views 1148 911 101
PDF Downloads 233 155 8
Advertisement