• 1.

    Johnson MC, Kamm RD. The role of Schlemm's canal in aqueous outflow from the human eye. Invest Ophthalmol Vis Sci 1983; 24:320325.

  • 2.

    Van Buskirk EM. The canine eye: the vessels of aqueous drainage. Invest Ophthalmol Vis Sci 1979; 18:223230.

  • 3.

    Tripathi RC, Tripathi BJ. The mechanism of aqueous outflow in birds, I. An ultrastructural study of normal eyes. Exp Eye Res 1973; 15:409423.

    • Search Google Scholar
    • Export Citation
  • 4.

    Lauber JK, Boyd JE, Boyd TAS. Aqueous humor inflow in normal and glaucomatous avian eyes. Exp Eye Res 1972; 13:7782.

  • 5.

    Tripathi RC, Tripathi BJ. The mechanism of aqueous outflow in birds, II. An ultrastructural study of perfused eyes. Exp Eye Res 1973; 15:425434.

    • Search Google Scholar
    • Export Citation
  • 6.

    Deem SL, Terrell SP, Forrester DJ. A retrospective study of morbidity and mortality of raptors in Florida: 1988–1994. J Zoo Wildl Med 1998; 29:160164.

    • Search Google Scholar
    • Export Citation
  • 7.

    Murphy CJ, Kern TJ, McKeever K, et al. Ocular lesions in free-living raptors. J Am Vet Med Assoc 1982; 181:13021304.

  • 8.

    Rayment LJ & Williams D. Glaucoma in a captive-bred great horned owl (Bubo virginianus virginianus). Vet Rec 1997; 140:481483.

  • 9.

    de Kater AW, Smyth R, Rosenquist RC, et al. The Slate turkey: a model for secondary angle closure glaucoma. Invest Ophthalmol Vis Sci 1986; 27:17511754.

    • Search Google Scholar
    • Export Citation
  • 10.

    Gelatt KN, Brooks DE, Samuelson DA. Comparative glaucomatology I: the spontaneous glaucomas. J Glaucoma 1998; 3:187201.

  • 11.

    Gelatt KN, Brooks DE, Samuelson DA. Comparative glaucomatology II: the experimental glaucomas. J Glaucoma 1998; 7:282294.

  • 12.

    Gelatt KN. Animal models for glaucoma. Invest Ophthalmol Vis Sci 1977; 16:592596.

  • 13.

    Whitley RD, Albert RA, Brewer RN, et al. Photoinduced buphthalmic avian eyes: II. Continuous darkness. Poult Sci 1985; 64:18691874.

  • 14.

    Bayón A, Almela RM & Talavera J. Avian ophthalmology. Eur J Comp Anim Med 2007; 17:253265.

  • 15.

    Ofri R. Intraocular pressure and glaucoma. Vet Clin North Am Exotic Anim Pract 2002; 5:391406.

  • 16.

    MacLaren NE, Krohne SG, Porter RE, et al. Corynebacterium endophthalmitis, glaucoma, and sclera ossicle osteomyelitis in a great horned owl (Bubo virginianus). J Zoo Wild Anim Med 1995; 26:453459.

    • Search Google Scholar
    • Export Citation
  • 17.

    Davidson M. Ocular consequences of trauma in raptors. Semin Avian Exotic Pet Med 1997; 6:121130.

  • 18.

    Holt DW, Layne EA. Eye injuries in long-eared owls (Asio otus): prevalence and survival. J Raptor Res 2008; 42:243247.

  • 19.

    Ward DA, Cawrse MA, Hendrix DVH. Fluorophotometric determination of aqueous humor flow rate in clinically normal dogs. Am J Vet Res 2001; 62:853858.

    • Search Google Scholar
    • Export Citation
  • 20.

    Jones RF, Maurice DM. New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 1966; 5:208220.

  • 21.

    Yablonski ME, Zimmerman TJ, Waltman SR, et al. A fluorophotometric study of the effect of topical timolol on AH dynamics. Exp Eye Res 1978; 27:135142.

    • Search Google Scholar
    • Export Citation
  • 22.

    Van Best JA, Boets EPM, Stolwijk TR. Simultaneous determination of corneal endothelial permeability value and anterior chamber flow. In: Cunha-Vaz JG, Leite E, Ramos MC, eds. Manual of ocular fluorophotometry. Coimbra, Portugal: Coimbra, 1993;5167.

    • Search Google Scholar
    • Export Citation
  • 23.

    Larsson L, Pach JM, Brubaker RF. Aqueous humor dynamics in patients with diabetes mellitus. Am J Ophthalmol 1995; 120:362367.

  • 24.

    van Best JA, Levene RZ, Thomas G, et al. Fluorophotometry and the rate of aqueous humor flow in man. I. Instrumentation and normal values. Arch Ophthalmol 1976; 94:435443.

    • Search Google Scholar
    • Export Citation
  • 25.

    Gaul GR, Brubaker RF. Measurement of aqueous flow in rabbits with corneal and vitreous depots of fluorescent dye. Invest Ophthalmol Vis Sci 1986; 27:13311335.

    • Search Google Scholar
    • Export Citation
  • 26.

    Higginbotham EJ, Lee DA, Bartels SP, et al. Effects of cyclocryotherapy on aqueous humor dynamics in cats. Arch Ophthalmol 1988; 106:396403.

    • Search Google Scholar
    • Export Citation
  • 27.

    Brubaker RF. Clinical evaluation of the circulation of aqueous humor. In: Tasman W, Jaeger EA, eds. Duane's foundations of clinical ophthalmology. Philadelphia: JB Lippincott Co, 1992;1–11.

    • Search Google Scholar
    • Export Citation
  • 28.

    Stamper RL, Sanghvi SS. Intraocular pressure: measurement, regulation, and flow relationships. In: Tasman W, Jaeger EA, eds. Duane's foundations of clinical ophthalmology. Philadelphia: JB Lippincott Co, 1999;1–31.

    • Search Google Scholar
    • Export Citation
  • 29.

    Man-Bok J, Young-Jun K, Na-Young Y, et al. Comparison of the rebound tonometer (TonoVet) with the applanation tonometer (TonoPen XL) in normal Eurasian eagle owls (Bubo bubo). Vet Ophthalmol 2007; 10:376379.

    • Search Google Scholar
    • Export Citation
  • 30.

    Stiles J, Buyukmihci NC, Farver TB. Tonometry of normal eyes in raptors. Am J Vet Res 1994; 55:477479.

  • 31.

    Bloom JN, Levene RZ, Thomas G. et al. Fluorophotometry and the rate of aqueous flow in man. I. Instrumentation and normal values. Arch Ophthalmol 1976; 94:435443.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ghate D, Brooks W, McCarey BE, et al. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci 2007; 48:22302237.

    • Search Google Scholar
    • Export Citation
  • 33.

    Bartels SP. AH flow measured with fluorophotometry in timolol-treated primates. Invest Ophthalmol Vis Sci 1988; 29:14981504.

  • 34.

    Wang RF, Gagliuso DJ, Mittag TW, et al. Effect of 15-keto latanoprost on intraocular pressure and AH dynamics in monkey eyes. Invest Ophthalmol Vis Sci 2007; 48:41434147.

    • Search Google Scholar
    • Export Citation
  • 35.

    Avila MY, Mitchell CH, Stone RA, et al. Noninvasive assessment of AH turnover in the mouse eye. Invest Ophthalmol Vis Sci 2003; 44:722727.

    • Search Google Scholar
    • Export Citation
  • 36.

    Reitsamer HA, Bogner B, Tockner B, et al. Effects of dorzolamide on choroidal blood flow, ciliary blood flow, and aqueous production in rabbits. Invest Ophthalmol Vis Sci 2009; 50:23012307.

    • Search Google Scholar
    • Export Citation
  • 37.

    Mosier MA, Gray JR, Ishimoto BM. Ocular fluorophotometric analysis. Curr Eye Res 1982; 2:699704.

  • 38.

    Jampol LM & Cunha-Vaz J. Diagnostic agents in ophthalmology: sodium fluorescein and other dyes. In: Sears ML, ed. Pharmacology of the eye. New York: Springer-Verlag, 1984;699–714.

    • Search Google Scholar
    • Export Citation
  • 39.

    Bárány E. The rate of flow of aqueous humour in the chicken (Gallus domesticus). Acta Physiol Scand 1951; 22:340344.

  • 40.

    Tripathi RC. Ultrastructure of the exit pathway of the aqueous in lower mammals. Exp Eye Res 1971; 12:311314.

Advertisement

Fluorophotometric determination of aqueous humor flow rates in red-tailed hawks (Buteo jamaicensis)

View More View Less
  • 1 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.
  • | 2 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996.

Abstract

Objective—To determine aqueous humor flow rate (AHFR) in an avian species by use of anterior segment fluorophotometry.

Animals—9 healthy red-tailed hawks (Buteo jamaicensis; 4 males and 5 females) that ranged from 8 months to 8 years of age.

Procedures—A protocol was developed for fluorophotometric determination of AHFR. Topical administration of 10% fluorescein was used to load the corneas, and corneal and aqueous humor fluorescein concentrations were measured approximately 5, 6.5, and 8 hours later. Concentration-versus-time plots were generated, and slopes and cornea-to-aqueous humor concentration ratios from these plots were used to manually calculate flow rates.

Results—Mean ± SD AHFRs for the right eye, left eye, and both eyes were 3.17 ± 1.36 μL/min (range, 1.67 to 6.21 μL/min), 2.86 ± 0.88 μL/min (range, 2.04 to 4.30 μL/min), and 2.90 ± 0.90 μL/min (range, 1.67 to 4.42 μL/min), respectively. The AHFRs were similar for right and left eyes. These flow rates represented a mean aqueous humor transfer coefficient of 0.0082/min, which is similar to that of mammalian species.

Conclusions and Clinical Relevance—The AHFR in red-tailed hawks was similar to that of most mammalian species, and the fractional egress was almost identical to that of other species. This information will allow a greater understanding of aqueous humor flow in avian eyes, which is crucial when evaluating diseases that affect avian eyes as well as medications that alter aqueous humor flow.

Contributor Notes

Address correspondence to Dr. Jones (mpjones@utk.edu).