Evaluation of anesthetic, analgesic, and cardiorespiratory effects in dogs after intramuscular administration of dexmedetomidine–butorphanol–tiletamine-zolazepam or dexmedetomidine-tramadol-ketamine drug combinations

Rebecca A. Krimins Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907.

Search for other papers by Rebecca A. Krimins in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Jeff C. Ko Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907.

Search for other papers by Jeff C. Ko in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Ann B. Weil Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907.

Search for other papers by Ann B. Weil in
Current site
Google Scholar
PubMed
Close
 MS, DVM
, and
Mark E. Payton Department of Statistics, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078.

Search for other papers by Mark E. Payton in
Current site
Google Scholar
PubMed
Close
 PhD

Abstract

Objective—To compare anesthetic, analgesic, and cardiorespiratory effects in dogs after IM administration of dexmedetomidine (7.5 μg/kg)–butorphanol (0.15 mg/kg)–tiletamine-zolazepam (3.0 mg/kg; DBTZ) or dexmedetomidine (15.0 μg/kg)-tramadol (3.0 mg/kg)-ketamine (3.0 mg/kg; DTrK) combinations.

Animals—6 healthy adult mixed-breed dogs.

Procedures—Each dog received DBTZ and DTrK in a randomized, crossover-design study with a 5-day interval between treatments. Cardiorespiratory variables and duration and quality of sedation-anesthesia (assessed via auditory stimulation and sedation-anesthesia scoring) and analgesia (assessed via algometry and electrical nerve stimulation) were evaluated at predetermined intervals.

Results—DBTZ or DTrK induced general anesthesia sufficient for endotracheal intubation ≤ 7 minutes after injection. Anesthetic quality and time from drug administration to standing recovery (131.5 vs 109.5 minutes after injection of DBTZ and DTrK, respectively) were similar between treatments. Duration of analgesia was significantly longer with DBTZ treatment, compared with DTrK treatment. Analgesic effects were significantly greater with DBTZ treatment than with DTrK treatment at several time points. Transient hypertension (mean arterial blood pressure > 135 mm Hg), bradycardia (heart rate < 60 beats/min), and hypoxemia (oxygen saturation < 90% via pulse oximetry) were detected during both treatments. Tidal volume decreased significantly from baseline with both treatments and was significantly lower after DBTZ administration, compared with DTrK, at several time points.

Conclusions and Clinical Relevance—DBTZ or DTrK rapidly induced short-term anesthesia and analgesia in healthy dogs. Further research is needed to assess efficacy of these drug combinations for surgical anesthesia. Supplemental 100% oxygen should be provided when DBTZ or DTrK are used.

Abstract

Objective—To compare anesthetic, analgesic, and cardiorespiratory effects in dogs after IM administration of dexmedetomidine (7.5 μg/kg)–butorphanol (0.15 mg/kg)–tiletamine-zolazepam (3.0 mg/kg; DBTZ) or dexmedetomidine (15.0 μg/kg)-tramadol (3.0 mg/kg)-ketamine (3.0 mg/kg; DTrK) combinations.

Animals—6 healthy adult mixed-breed dogs.

Procedures—Each dog received DBTZ and DTrK in a randomized, crossover-design study with a 5-day interval between treatments. Cardiorespiratory variables and duration and quality of sedation-anesthesia (assessed via auditory stimulation and sedation-anesthesia scoring) and analgesia (assessed via algometry and electrical nerve stimulation) were evaluated at predetermined intervals.

Results—DBTZ or DTrK induced general anesthesia sufficient for endotracheal intubation ≤ 7 minutes after injection. Anesthetic quality and time from drug administration to standing recovery (131.5 vs 109.5 minutes after injection of DBTZ and DTrK, respectively) were similar between treatments. Duration of analgesia was significantly longer with DBTZ treatment, compared with DTrK treatment. Analgesic effects were significantly greater with DBTZ treatment than with DTrK treatment at several time points. Transient hypertension (mean arterial blood pressure > 135 mm Hg), bradycardia (heart rate < 60 beats/min), and hypoxemia (oxygen saturation < 90% via pulse oximetry) were detected during both treatments. Tidal volume decreased significantly from baseline with both treatments and was significantly lower after DBTZ administration, compared with DTrK, at several time points.

Conclusions and Clinical Relevance—DBTZ or DTrK rapidly induced short-term anesthesia and analgesia in healthy dogs. Further research is needed to assess efficacy of these drug combinations for surgical anesthesia. Supplemental 100% oxygen should be provided when DBTZ or DTrK are used.

All Time Past Year Past 30 Days
Abstract Views 124 0 0
Full Text Views 1263 763 157
PDF Downloads 675 252 13
Advertisement