Viscoelastic pharmacodynamics after dalteparin administration to healthy dogs

Benjamin M. Brainard Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Benjamin M. Brainard in
Current site
Google Scholar
PubMed
Close
 VMD
,
Amie Koenig Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Amie Koenig in
Current site
Google Scholar
PubMed
Close
 DVM
,
Danielle M. Babski Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Danielle M. Babski in
Current site
Google Scholar
PubMed
Close
 DVM
,
April E. Blong Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by April E. Blong in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Jordan R. Scherk Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Jordan R. Scherk in
Current site
Google Scholar
PubMed
Close
 DVM

Abstract

Objective—To evaluate the pharmacodynamic effects of dalteparin in dogs by means of viscoelastic coagulation monitoring with a thromboelastograph and a dynamic viscoelastic coagulometer.

Animals—6 healthy adult mixed-breed dogs.

Procedures—Dalteparin (175 U/kg, SC, q 12 h) was administered for 4 days (days 1 through 4). Viscoelastic coagulation monitoring was performed hourly on the first and last days of treatment and included intermittent measurement of anti–activated coagulation factor X activity (AXA).

Results—Dalteparin administration resulted in progressive hypocoagulability. On both day 1 and 4, activated clotting time and clot rate for the dynamic viscoelastic coagulometer differed significantly from baseline values, whereas the platelet function parameter did not change on day 1 but did on day 4. The R (reaction time), time from reaction time until the amplitude of the thromboelastography tracing is 20 mm, α-angle, and maximum amplitude differed from baseline values on days 1 and 4, although many thromboelastographic variables were not determined. The AXA was increased from baseline values at 3 and 6 hours after administration of the dalteparin injection on days 1 and 4, and all dogs had AXA values between 0.5 and 1.0 U/mL at 2 and 4 hours after administration. The AXA correlated well with activated clotting time (r = 0.761) and with R (r = 0.810), when values were available. Thromboelastography could not be used to distinguish AXA > 0.7 U/mL.

Conclusions and Clinical Relevance—Viscoelastic coagulation monitoring with strong coagulation activators may be used to monitor treatment with dalteparin in healthy dogs.

Abstract

Objective—To evaluate the pharmacodynamic effects of dalteparin in dogs by means of viscoelastic coagulation monitoring with a thromboelastograph and a dynamic viscoelastic coagulometer.

Animals—6 healthy adult mixed-breed dogs.

Procedures—Dalteparin (175 U/kg, SC, q 12 h) was administered for 4 days (days 1 through 4). Viscoelastic coagulation monitoring was performed hourly on the first and last days of treatment and included intermittent measurement of anti–activated coagulation factor X activity (AXA).

Results—Dalteparin administration resulted in progressive hypocoagulability. On both day 1 and 4, activated clotting time and clot rate for the dynamic viscoelastic coagulometer differed significantly from baseline values, whereas the platelet function parameter did not change on day 1 but did on day 4. The R (reaction time), time from reaction time until the amplitude of the thromboelastography tracing is 20 mm, α-angle, and maximum amplitude differed from baseline values on days 1 and 4, although many thromboelastographic variables were not determined. The AXA was increased from baseline values at 3 and 6 hours after administration of the dalteparin injection on days 1 and 4, and all dogs had AXA values between 0.5 and 1.0 U/mL at 2 and 4 hours after administration. The AXA correlated well with activated clotting time (r = 0.761) and with R (r = 0.810), when values were available. Thromboelastography could not be used to distinguish AXA > 0.7 U/mL.

Conclusions and Clinical Relevance—Viscoelastic coagulation monitoring with strong coagulation activators may be used to monitor treatment with dalteparin in healthy dogs.

All Time Past Year Past 30 Days
Abstract Views 58 0 0
Full Text Views 698 456 36
PDF Downloads 218 131 6
Advertisement