Evaluation of the in vitro activity of gallium nitrate against Mycobacterium avium subsp paratuberculosis

Marie-Eve Fecteau Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Search for other papers by Marie-Eve Fecteau in
Current site
Google Scholar
PubMed
Close
 DVM
,
Terry L. Fyock Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Search for other papers by Terry L. Fyock in
Current site
Google Scholar
PubMed
Close
,
Susan C. McAdams Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Search for other papers by Susan C. McAdams in
Current site
Google Scholar
PubMed
Close
 BS
,
Raymond C. Boston Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Search for other papers by Raymond C. Boston in
Current site
Google Scholar
PubMed
Close
 PhD
,
Robert H. Whitlock Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Search for other papers by Robert H. Whitlock in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Raymond W. Sweeney Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA 19348.

Search for other papers by Raymond W. Sweeney in
Current site
Google Scholar
PubMed
Close
 VMD

Abstract

Objective—To evaluate the in vitro susceptibility of various field isolates of Mycobacterium avium subsp paratuberculosis (MAP) to gallium nitrate.

Sample—10 isolates of MAP, including 4 isolated from cattle, 2 isolated from bison, 1 isolated from an alpaca, and 3 isolated from humans.

Procedures—The in vitro susceptibility to gallium nitrate was tested by use of broth culture with detection of MAP growth by means of a nonradiometric automated detection method. For each MAP isolate, a series of 7 dilutions of gallium nitrate (concentrations ranging from 200 to 1,000μM) were tested. Gallium nitrate was considered to have caused 90% and 99% inhibition of the MAP growth when the time to detection for culture of the MAP stock solution and a specific concentration of gallium nitrate was delayed and was similar to that obtained for culture of the MAP stock solution (without the addition of gallium nitrate) diluted 1:10 and 1:100, respectively.

Results—Gallium nitrate inhibited MAP growth in all 10 isolates. The susceptibility to gallium nitrate was variable among isolates, and all isolates of MAP were inhibited in a dose-dependent manner. Overall, the concentration that resulted in 90% inhibition ranged from < 200μM for the most susceptible isolates to 743μM for the least susceptible isolates.

Conclusions and Clinical Relevance—Gallium nitrate had activity against all 10 isolates of MAP tested in vitro and could potentially be used as a prophylactic agent to aid in the control of MAP infections during the neonatal period.

Abstract

Objective—To evaluate the in vitro susceptibility of various field isolates of Mycobacterium avium subsp paratuberculosis (MAP) to gallium nitrate.

Sample—10 isolates of MAP, including 4 isolated from cattle, 2 isolated from bison, 1 isolated from an alpaca, and 3 isolated from humans.

Procedures—The in vitro susceptibility to gallium nitrate was tested by use of broth culture with detection of MAP growth by means of a nonradiometric automated detection method. For each MAP isolate, a series of 7 dilutions of gallium nitrate (concentrations ranging from 200 to 1,000μM) were tested. Gallium nitrate was considered to have caused 90% and 99% inhibition of the MAP growth when the time to detection for culture of the MAP stock solution and a specific concentration of gallium nitrate was delayed and was similar to that obtained for culture of the MAP stock solution (without the addition of gallium nitrate) diluted 1:10 and 1:100, respectively.

Results—Gallium nitrate inhibited MAP growth in all 10 isolates. The susceptibility to gallium nitrate was variable among isolates, and all isolates of MAP were inhibited in a dose-dependent manner. Overall, the concentration that resulted in 90% inhibition ranged from < 200μM for the most susceptible isolates to 743μM for the least susceptible isolates.

Conclusions and Clinical Relevance—Gallium nitrate had activity against all 10 isolates of MAP tested in vitro and could potentially be used as a prophylactic agent to aid in the control of MAP infections during the neonatal period.

All Time Past Year Past 30 Days
Abstract Views 47 0 0
Full Text Views 798 592 25
PDF Downloads 120 81 3
Advertisement