Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses

Kevin G. Keegan Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Kevin G. Keegan in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Joanne Kramer Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Joanne Kramer in
Current site
Google Scholar
PubMed
Close
 DVM
,
Yoshiharu Yonezawa Department of Health Science, Hiroshima Institute of Technology, Hiroshima, 731-5193, Japan.

Search for other papers by Yoshiharu Yonezawa in
Current site
Google Scholar
PubMed
Close
 PhD
,
Hiromitchi Maki Department of Health Science, Hiroshima Institute of Technology, Hiroshima, 731-5193, Japan.

Search for other papers by Hiromitchi Maki in
Current site
Google Scholar
PubMed
Close
 PhD
,
P. Frank Pai Department of Mechanical and Aerospace Engineering, College of Engineering, University of Missouri, Columbia, MO 65211.

Search for other papers by P. Frank Pai in
Current site
Google Scholar
PubMed
Close
 PhD
,
Eric V. Dent Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Eric V. Dent in
Current site
Google Scholar
PubMed
Close
 DVM
,
Thomas E. Kellerman Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Thomas E. Kellerman in
Current site
Google Scholar
PubMed
Close
 DVM
,
David A. Wilson Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by David A. Wilson in
Current site
Google Scholar
PubMed
Close
 DVM, MS
, and
Shannon K. Reed Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211.

Search for other papers by Shannon K. Reed in
Current site
Google Scholar
PubMed
Close
 DVM, MS

Abstract

Objective—To determine repeatability of a wireless, inertial sensor–based lameness evaluation system in horses.

Animals—236 horses.

Procedures—Horses were from 2 to 29 years of age and of various breeds and lameness disposition. All horses were instrumented with a wireless, inertial sensor-based motion analysis system on the head (accelerometer), pelvis (midline croup region [accelerometer]), and right forelimb (gyroscope) before evaluation in 2 consecutive trials, approximately 5 minutes apart, as the horse was trotted in a straight line. Signal-processing algorithms generated overall trial asymmetry measures for vertical head and pelvic movement and stride-by-stride differences in head and pelvic maximum and minimum positions between right and left sides of each stride. Repeatability was determined, and trial difference was determined for groups of horses with various numbers of strides for which data were collected per trial.

Results—Inertial sensor–based measures of torso movement asymmetry were repeatable. Repeatability for measures of torso asymmetry for determination of hind limb lameness was slightly greater than that for forelimb lameness. Collecting large numbers of strides degraded stride-to-stride repeatability but did not degrade intertrial repeatability.

Conclusions and Clinical Relevance—The inertial sensor system used to measure asymmetry of head and pelvic movement as an aid in the detection and evaluation of lameness in horses trotting in a straight line was sufficiently repeatable to investigate for clinical use.

Abstract

Objective—To determine repeatability of a wireless, inertial sensor–based lameness evaluation system in horses.

Animals—236 horses.

Procedures—Horses were from 2 to 29 years of age and of various breeds and lameness disposition. All horses were instrumented with a wireless, inertial sensor-based motion analysis system on the head (accelerometer), pelvis (midline croup region [accelerometer]), and right forelimb (gyroscope) before evaluation in 2 consecutive trials, approximately 5 minutes apart, as the horse was trotted in a straight line. Signal-processing algorithms generated overall trial asymmetry measures for vertical head and pelvic movement and stride-by-stride differences in head and pelvic maximum and minimum positions between right and left sides of each stride. Repeatability was determined, and trial difference was determined for groups of horses with various numbers of strides for which data were collected per trial.

Results—Inertial sensor–based measures of torso movement asymmetry were repeatable. Repeatability for measures of torso asymmetry for determination of hind limb lameness was slightly greater than that for forelimb lameness. Collecting large numbers of strides degraded stride-to-stride repeatability but did not degrade intertrial repeatability.

Conclusions and Clinical Relevance—The inertial sensor system used to measure asymmetry of head and pelvic movement as an aid in the detection and evaluation of lameness in horses trotting in a straight line was sufficiently repeatable to investigate for clinical use.

All Time Past Year Past 30 Days
Abstract Views 306 0 0
Full Text Views 2226 831 90
PDF Downloads 1544 428 25
Advertisement