In vitro effect of carprofen and meloxicam on the conductance and permeability to mannitol and the histologic appearance of the gastric mucosa of dogs

Merrin A. Hicks Departments of Veterinary Clinical Sciences

Search for other papers by Merrin A. Hicks in
Current site
Google Scholar
PubMed
Close
 BVSc, MVSc
,
Giselle L. Hosgood Departments of Veterinary Clinical Sciences

Search for other papers by Giselle L. Hosgood in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD
,
Timothy W. Morgan Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.

Search for other papers by Timothy W. Morgan in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Catherine A. Briere Departments of Veterinary Clinical Sciences

Search for other papers by Catherine A. Briere in
Current site
Google Scholar
PubMed
Close
 DVM
, and
Rebecca S. McConnico Departments of Veterinary Clinical Sciences

Search for other papers by Rebecca S. McConnico in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To evaluate the effects of carprofen and meloxicam on conductance and permeability to mannitol and on the histologic appearance of sections of canine gastric mucosa.

Sample—Gastric mucosa from 6 mature mixed-breed dogs.

Procedures—Sections of gastric mucosa were mounted in Ussing chambers, and carprofen (40 or 400μg/mL [CAR40 and CAR400, respectively]), meloxicam (8 or 80μg/mL [MEL8 and MEL80, respectively]), or no drug (controls) was added to the bathing solution. For all sections, conductance was calculated every 15 minutes for 240 minutes and flux of mannitol was calculated for 3 consecutive 1-hour periods; histologic examination was performed after the experiment. The area under the conductance-time curve for each chamber was calculated. Values of conductance × time, flux of mannitol, and the frequency distribution of histologic findings were analyzed for treatment effects.

Results—For CAR400- and MEL80-treated sections, conductance X time was significantly higher than that for control and MEL8-treated sections. The effect of CAR40 treatment was not different from that of any other treatment. Over the three 1-hour periods, mannitol flux increased significantly in MEL80-, CAR40-, and CAR400-treated sections but not in MEL8- treated or control sections. Major histologic changes including epithelial cell sloughing were limited to the CAR400-treated sections.

Conclusions and Clinical Relevance—In the gastric mucosa of dogs, carprofen and meloxicam increased in vitro conductance and permeability to mannitol. At a concentration of 400 μg/mL, carprofen caused sloughing of epithelial cells. Carprofen and meloxicam appear to compromise gastric mucosal integrity and barrier function in dogs.

Abstract

Objective—To evaluate the effects of carprofen and meloxicam on conductance and permeability to mannitol and on the histologic appearance of sections of canine gastric mucosa.

Sample—Gastric mucosa from 6 mature mixed-breed dogs.

Procedures—Sections of gastric mucosa were mounted in Ussing chambers, and carprofen (40 or 400μg/mL [CAR40 and CAR400, respectively]), meloxicam (8 or 80μg/mL [MEL8 and MEL80, respectively]), or no drug (controls) was added to the bathing solution. For all sections, conductance was calculated every 15 minutes for 240 minutes and flux of mannitol was calculated for 3 consecutive 1-hour periods; histologic examination was performed after the experiment. The area under the conductance-time curve for each chamber was calculated. Values of conductance × time, flux of mannitol, and the frequency distribution of histologic findings were analyzed for treatment effects.

Results—For CAR400- and MEL80-treated sections, conductance X time was significantly higher than that for control and MEL8-treated sections. The effect of CAR40 treatment was not different from that of any other treatment. Over the three 1-hour periods, mannitol flux increased significantly in MEL80-, CAR40-, and CAR400-treated sections but not in MEL8- treated or control sections. Major histologic changes including epithelial cell sloughing were limited to the CAR400-treated sections.

Conclusions and Clinical Relevance—In the gastric mucosa of dogs, carprofen and meloxicam increased in vitro conductance and permeability to mannitol. At a concentration of 400 μg/mL, carprofen caused sloughing of epithelial cells. Carprofen and meloxicam appear to compromise gastric mucosal integrity and barrier function in dogs.

All Time Past Year Past 30 Days
Abstract Views 66 0 0
Full Text Views 731 543 45
PDF Downloads 157 76 2
Advertisement