Abstract
Objective—To quantify changes in hoof wall strain distribution associated with exercise and time in Standardbreds.
Animals—18 young adult Standardbreds.
Procedures—9 horses were exercised 4 d/wk for 30 to 45 minutes at a medium trot for 4 months; 9 nonexercised horses served as the control group. Rosette strain gauges were used to measure the principal surface strains at the toe, lateral quarter of the hoof wall (LQ), and medial quarter of the hoof wall (MQ) of the right forefoot at the beginning and end of the experiment. Midstance maximal (msϵ1) and minimal (msϵ2) principal and peak minimal principal (pkϵ2) surface strains were measured; SDs of each of those variables were also calculated. Results were compared through ANOVA of time and exercise effects between and within the groups.
Results—Both the exercised and nonexercised groups had changes in strain distribution in their hooves over time. The msϵ1 did not change significantly with exercise; however, it changed significantly in both groups at both hoof quarters over time. At the beginning of the study, mean msϵ2 and pkϵ2 values were significantly higher in the exercised group than in the control group at the MQ and LQ but not at the toe. At the end of the study, these values were significantly higher in the control group than in the exercised group at the toe but not at the MQ or LQ.
Conclusions and Clinical Relevance—Detected changes in hoof wall surface strain may indicate the ability of hoof capsule material to respond to exercise. A better understanding of hoof adaptation to applied forces may allow implementation of proper trimming and shoeing techniques to promote adaptation to exercise loads in horses.