Evaluation of the ability of aqueous black walnut extracts to induce the production of reactive oxygen species

David J. Hurley Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.
Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by David J. Hurley in
Current site
Google Scholar
PubMed
Close
 PhD
,
Katherine A. E. Hurley Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Katherine A. E. Hurley in
Current site
Google Scholar
PubMed
Close
 BA
,
Kimberly L. Galland Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Kimberly L. Galland in
Current site
Google Scholar
PubMed
Close
 BS
,
Bradley Baker Food Animal Health and Management Program, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Bradley Baker in
Current site
Google Scholar
PubMed
Close
 MADS
,
Londa J. Berghaus Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by Londa J. Berghaus in
Current site
Google Scholar
PubMed
Close
 MS
,
James N. Moore Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA 30602.

Search for other papers by James N. Moore in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
Rita S. K. Majerle Department of Chemistry, College of Liberal Arts, Hamline University, Saint Paul, MN 55104.

Search for other papers by Rita S. K. Majerle in
Current site
Google Scholar
PubMed
Close
 PhD

Abstract

Objective—To assess the in vitro capability of aqueous black walnut extracts (BWEs) to generate reactive oxygen species in water-based media ranging in makeup from a simple buffer solution to a complex solution containing serum.

Sample—3 BWEs.

Procedures—Production of reactive oxygen species by BWEs prepared in water or N-hexane was tested in PBS solution, PBS solution containing 0.5% bovine serum albumin and 5mM glucose (PBG), and RPMI-1640 medium (RPMI) containing 10% fetal bovine serum or 10% donor horse serum. Reactive oxygen species production was measured as conversion of nonfluorescent dihydrorhodamine 123 by reactive oxygen species to its fluorescent product, rhodamine-123. Hydrogen peroxide was used as a standard for reactive oxygen species activity.

Results—BWEs prepared in water generated reactive oxygen species in a dose-dependent manner over a 4-hour period, with peak activity detected when the BWEs were added as 10% (vol/vol) of the RPMI. The BWE prepared in N-hexane generated maximal reactive oxygen species activity after incubation for 3 to 4 hours when added at concentrations ranging from 0.3% to 0.5% (vol/vol) of the RPMI. The BWE prepared in water generated the highest fluorescent signal in PBS solution, whereas the BWE prepared in N-hexane generated the highest fluorescent signal in PBG.

Conclusions and Clinical Relevance—The BWEs prepared in water generated a dose-dependent induction of fluorescence in all the water-based solutions tested. These findings indicated that the BWEs, which are used to induce laminitis in horses, generate reactive oxygen species.

Abstract

Objective—To assess the in vitro capability of aqueous black walnut extracts (BWEs) to generate reactive oxygen species in water-based media ranging in makeup from a simple buffer solution to a complex solution containing serum.

Sample—3 BWEs.

Procedures—Production of reactive oxygen species by BWEs prepared in water or N-hexane was tested in PBS solution, PBS solution containing 0.5% bovine serum albumin and 5mM glucose (PBG), and RPMI-1640 medium (RPMI) containing 10% fetal bovine serum or 10% donor horse serum. Reactive oxygen species production was measured as conversion of nonfluorescent dihydrorhodamine 123 by reactive oxygen species to its fluorescent product, rhodamine-123. Hydrogen peroxide was used as a standard for reactive oxygen species activity.

Results—BWEs prepared in water generated reactive oxygen species in a dose-dependent manner over a 4-hour period, with peak activity detected when the BWEs were added as 10% (vol/vol) of the RPMI. The BWE prepared in N-hexane generated maximal reactive oxygen species activity after incubation for 3 to 4 hours when added at concentrations ranging from 0.3% to 0.5% (vol/vol) of the RPMI. The BWE prepared in water generated the highest fluorescent signal in PBS solution, whereas the BWE prepared in N-hexane generated the highest fluorescent signal in PBG.

Conclusions and Clinical Relevance—The BWEs prepared in water generated a dose-dependent induction of fluorescence in all the water-based solutions tested. These findings indicated that the BWEs, which are used to induce laminitis in horses, generate reactive oxygen species.

All Time Past Year Past 30 Days
Abstract Views 22 0 0
Full Text Views 1184 920 79
PDF Downloads 118 59 1
Advertisement