• 1.

    Atkins C, Bonagura J, Ettinger S, et al. Guidelines for the diagnosis and treatment of canine chronic valvular heart disease. J Vet Intern Med 2009; 23: 11421150.

    • Search Google Scholar
    • Export Citation
  • 2.

    Häggström J, Boswood A, O'Grady M, et al. Effect of pimobendan or benazepril hydrochloride on survival times in dogs with congestive heart failure caused by naturally occurring myxomatous mitral valve disease: the QUEST study. J Vet Intern Med 2008; 22: 11241135.

    • Search Google Scholar
    • Export Citation
  • 3.

    O'Grady M, Minors S, O'Sullivan L, et al. Effect of pimobendan on case fatality rate in Doberman Pinschers with congestive heart failure caused by dilated cardiomyopathy. J Vet Intern Med 2008; 22: 897904.

    • Search Google Scholar
    • Export Citation
  • 4.

    Luis-Fuentes V, Corcoran B, French A, et al. A double-blind randomized placebo-controlled study of pimobendan in dogs with dilated cardiomyopathy. J Vet Intern Med 2002; 16: 255261.

    • Search Google Scholar
    • Export Citation
  • 5.

    Amberger C, Chetboul V, Bomassi E, et al. Comparison of the effects of imidapril and enalapril in a prospective, multicentric randomized trial in dogs with naturally acquired heart failure. J Vet Cardiol 2004; 6: 916.

    • Search Google Scholar
    • Export Citation
  • 6.

    The BENCH (BENazepril in Canine Heart disease) Study Group. The effect of benazepril on survival times and clinical signs of dogs with congestive heart failure: results of a multicenter, prospective, randomised, double-blinded, placebo-controlled, long-term clinical trial. J Vet Cardiol 1999; 1: 718.

    • Search Google Scholar
    • Export Citation
  • 7.

    The COVE Study Group. Controlled clinical evaluation of enalapril in dogs with heart failure: results of the Cooperative Veterinary Enalapril Study Group. J Vet Intern Med 1995; 9: 243252.

    • Search Google Scholar
    • Export Citation
  • 8.

    Ettinger SJ, Benitz AM, Ericsson GF, et al. Effects of enalapril maleate on survival of dogs with naturally acquired heart failure. The Long-Term Investigation of Veterinary Enalapril (LIVE) Study Group. J Am Vet Med Assoc 1999; 11: 15731577.

    • Search Google Scholar
    • Export Citation
  • 9.

    Lovern CS, Swecker WS, Lee JC, et al. Additive effects of a sodium chloride restricted diet and furosemide administration in healthy dogs. Am J Vet Res 2001; 62: 17931796.

    • Search Google Scholar
    • Export Citation
  • 10.

    Hori Y, Takusagawa F, Ikadai H, et al. Effects of oral administration of furosemide and torsemide in healthy dogs. Am J Vet Res 2007; 68: 10581063.

    • Search Google Scholar
    • Export Citation
  • 11.

    Häggström J, Hansson K, Karlberg BE, et al. Effects of long-term treatment with enalapril or hydralazine on the renin-angiotensin-aldosterone system and fluid balance in dogs with naturally acquired mitral valve regurgitation. Am J Vet Res 1996; 57: 16451651.

    • Search Google Scholar
    • Export Citation
  • 12.

    Atkins CE, Rausch RW, Gardner SY, et al. The effect of amlodipine and the combination of amlodipine and enalapril on the renin-angiotensin-aldosterone system in the dog. J Vet Pharmacol Ther 2007; 30: 394400.

    • Search Google Scholar
    • Export Citation
  • 13.

    FDA. Freedom of Information summary for pimobendan. Available at: www.fda.gov/cvm/FOI/141-273o043007.pdf. Accessed Sep 1, 2006.

  • 14.

    Fuentes VL, Corcoran B, French A, et al. A double-blind, randomized, placebo-controlled study of pimobendan in dogs with dilated cardiomyopathy. J Vet Intern Med 2002; 16: 255261.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sayer MA, Atkins CE, Fujii Y, et al. Acute effect of pimobendan and furosemide on the circulating renin-angiotensin-aldosterone system in healthy dogs. J Vet Intern Med 2009; 23: 10031006.

    • Search Google Scholar
    • Export Citation
  • 16.

    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med 1999; 341: 577585.

  • 17.

    Weber KT. Aldosterone in congestive heart failure. N Engl J Med 2001; 345: 16891697.

  • 18.

    Rocha R, Stier CT, Kifor I, et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000; 141: 38713878.

    • Search Google Scholar
    • Export Citation
  • 19.

    Fullerton MJ, Funder JW. Aldosterone and cardiac fibrosis: in vitro studies. Cardiovasc Res 1994; 28: 18631867.

  • 20.

    Wang W, McClain JM, Zucker IH. Aldosterone reduces baroreceptor discharge in the dog. Hypertension 1992; 19: 270277.

  • 21.

    Gardner SY, Atkins CE, Rausch WP, et al. Estimation of 24-h aldosterone secretion in the dog using the urine aldosterone: creatinine ratio. J Vet Cardiol 2007; 9: 17.

    • Search Google Scholar
    • Export Citation
  • 22.

    Dormans TPJ, Pickkers P, Russel FGM, et al. Vascular effects of loop diuretics. Cardiovasc Res 1996; 32: 988997.

  • 23.

    Chiu PJ, Vemulapalli S, Barnett A. Acute blood pressure and urinary responses to single dose combinations of captopril and diuretics in conscious spontaneously hypertensive rats. J Pharm Pharmacol 1985; 37: 105109.

    • Search Google Scholar
    • Export Citation
  • 24.

    Musini VM, Wright JM, Bassett K, et al. Blood pressure lowering efficacy of loop diuretics for primary hypertension. Cochrane Database Syst Rev 2010; (1):CD008167.

    • Search Google Scholar
    • Export Citation
  • 25.

    Castrop H, Lorenz JN, Hansen PB, et al. Contribution of the basolateral isoform of the Na-K-2Cl-cotransporter (NKCC1/BSC2) to renin secretion. Am J Physiol Renal Physiol 2005; 289: 11851192.

    • Search Google Scholar
    • Export Citation
  • 26.

    Martinez-Maldonado M, Gety R, Tapia E, et al. Role of macula densa in diuretics-induced renin release. Hypertension 1990; 16: 261268.

  • 27.

    Vander AJ, Carlson J. Mechanism of the effects of furosemide on renin secretion in anesthetized dogs. Circ Res 1969; 25: 145152.

  • 28.

    Osborn JL, Holdaas H, Thames MD, et al. Renal adrenoreceptor mediation of antinatriuretic and renin secretion responses to low frequency renal nerve stimulation in the dog. Circ Res 1983; 53: 298305.

    • Search Google Scholar
    • Export Citation
  • 29.

    Duarte CG. Effects of ethacrynic acid and furosemide on urinary calcium, phosphate, and magnesium. Metabolism 1968; 17: 867876.

  • 30.

    Tidholm A, Häggström J, Hansson K. Effects of dilated cardiomyopathy on the renin-angiotensin-aldosterone system, atrial natriuretic peptide activity, and thyroid hormone concentrations in dogs. Am J Vet Res 2001; 62: 961967.

    • Search Google Scholar
    • Export Citation
  • 31.

    Koch J, Pedersen HD, Jensen AL, et al. Activation of the renin-angiotensin system in dogs with asymptomatic and symptomatic dilated cardiomyopathy. Res Vet Sci 1995; 59: 172175.

    • Search Google Scholar
    • Export Citation
  • 32.

    Pedersen HD, Koch J, Poulsen K, et al. Activation of the renin-angiotensin system in dogs with asymptomatic and mildly symptomatic mitral valvular insufficiency. J Vet Intern Med 1995; 9: 328331.

    • Search Google Scholar
    • Export Citation
  • 33.

    Knowlen GG, Kittleson MD, Nachreiner RF, et al. Comparison of plasma aldosterone concentration among clinical status groups of dogs with chronic heart failure. J Am Vet Med Assoc 1983; 183: 991996.

    • Search Google Scholar
    • Export Citation
  • 34.

    Häggström J, Hansson K, Kvart C, et al. Effects of naturally acquired decompensated mitral valve regurgitation on the renin-angiotensin-aldosterone system and atrial natriuretic peptide concentration in dogs. Am J Vet Res 1997; 58: 7782.

    • Search Google Scholar
    • Export Citation
  • 35.

    Hori Y, Katou A, Tsubaki M, et al. Assessment of diuretic effects and changes in plasma aldosterone concentration following oral administration of a single dose of furosemide or azosemide in healthy dogs. Am J Vet Res 2008; 69: 16641669.

    • Search Google Scholar
    • Export Citation
  • 36.

    Dzau VJ. Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med 1993; 153: 937942.

  • 37.

    Dzau VJ, Berstein K, Celermajer D, et al. Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther 2002; 16: 149160.

    • Search Google Scholar
    • Export Citation
  • 38.

    Katwa LC, Campbell SE, Tyagi SC, et al. Cultured myofibro-blasts generate angiotensin peptides de novo. J Mol Cell Cardiol 1997; 29: 13751386.

    • Search Google Scholar
    • Export Citation
  • 39.

    Anversa P, Cheng W, Liu Y, et al. Apoptosis and myocardial infarction. Basic Res Cardiol 1998; 93: 812.

  • 40.

    Erlemeier HH, Kupper W, Bleifield W. Comparison of hormonal and hemodynamic changes after long-term therapy with pimobendan or enalapril—a double-blind randomised study. Eur Heart J 1991; 12: 889899.

    • Search Google Scholar
    • Export Citation
  • 41.

    Sasaki T, Kubo T, Komamura K, et al. Effects of long-term treatment with pimobendan on neurohumoral factors in patients with non-ischemic chronic moderate heart failure. J Cardiol 1999; 33: 317325.

    • Search Google Scholar
    • Export Citation
  • 42.

    Kanno N, Kuse H, Kawasaki M, et al. Effects of pimobendan for mitral valve regurgitation in dogs. J Vet Med Sci 2007; 69: 373377.

  • 43.

    Iwasaki A, Matsumori A, Yamada T, et al. Pimobendan inhibits the production of proinflammatory cytokines and gene expression of inducible nitric oxide synthase in a murine model of viral myocarditis. J Am Coll Cardiol 1999; 33: 14001407.

    • Search Google Scholar
    • Export Citation
  • 44.

    Matsumori A, Nunokawa Y, Sasayama S. Pimobendan inhibits the activation of transcription factor NF-kappaB: a mechanism which explains its inhibition of cytokine production and inducible nitric oxide synthase. Life Sci 2000; 67: 25132519.

    • Search Google Scholar
    • Export Citation
  • 45.

    Suki W, Rector FC, Seldin DW. The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 1965; 44: 14581469.

    • Search Google Scholar
    • Export Citation
  • 46.

    Cobb M, Michell AR. Plasma electrolyte concentrations in dogs receiving diuretic therapy for cardiac failure. J Small Anim Pract 1992; 33: 526529.

    • Search Google Scholar
    • Export Citation
  • 47.

    Ahmed A, Zannad F, Love TE, et al. A propensity-matched study of the association of low serum potassium levels and mortality in chronic heart failure. Eur Heart 2007; 28: 13341343.

    • Search Google Scholar
    • Export Citation
  • 48.

    Roudebush P, Allen TA, Kuehn NF, et al. The effect of combined therapy with captopril, furosemide, and a sodium-restricted diet on serum electrolyte concentrations and renal function in normal dogs and dogs with congestive heart failure. J Vet Intern Med 1994; 8: 337342.

    • Search Google Scholar
    • Export Citation
  • 49.

    Galla J. Metabolic alkalosis. J Am Soc Nephrol 2000; 11: 369375.

  • 50.

    Chan YL, Biagi B, Giebisch G. Control mechanism of bicarbonate transport across the rat proximal convoluted tubule. Am J Physiol 1982; 242:F532F543.

    • Search Google Scholar
    • Export Citation

Advertisement

Effects of furosemide and the combination of furosemide and the labeled dosage of pimobendan on the circulating renin-angiotensin-aldosterone system in clinically normal dogs

View More View Less
  • 1 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
  • | 2 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
  • | 3 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
  • | 4 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.
  • | 5 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Abstract

Objective—To evaluate the effect of administration of the labeled dosage of pimobendan to dogs with furosemide-induced activation of the renin-angiotensin-aldosterone system (RAAS).

Animals—12 healthy hound-type dogs.

Procedures—Dogs were allocated into 2 groups (6 dogs/group). One group received furosemide (2 mg/kg, PO, q 12 h) for 10 days (days 1 to 10). The second group received a combination of furosemide (2 mg/kg, PO, q 12 h) and pimobendan (0.25 mg/kg, PO, q 12 h) for 10 days (days 1 to 10). To determine the effect of the medications on the RAAS, 2 urine samples/d were obtained for determination of the urinary aldosterone-to-creatinine ratio (A:C) on days 0 (baseline), 5, and 10.

Results—Mean ± SD urinary A:C increased significantly after administration of furosemide (baseline, 0.37 ± 0.14 μg/g; day 5, 0.89 ± 0.23 μg/g) or the combination of furosemide and pimobendan (baseline, 0.36 ± 0.22 μg/g; day 5, 0.88 ± 0.55 μg/g). Mean urinary A:C on day 10 was 0.95 ± 0.63 μg/g for furosemide alone and 0.85 ± 0.21 μg/g for the combination of furosemide and pimobendan.

Conclusions and Clinical Relevance—Furosemide-induced RAAS activation appeared to plateau by day 5. Administration of pimobendan at a standard dosage did not enhance or suppress furosemide-induced RAAS activation. These results in clinically normal dogs suggested that furosemide, administered with or without pimobendan, should be accompanied by RAAS-suppressive treatment.

Contributor Notes

Dr. Lantis' present address is Veterinary Emergency and Referral Group, 318 Warren St, Brooklyn, NY 11201. Dr. Werre's present address is Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060.

Supported by the Jane Lewis Seaks endowment.

Presented in part as an oral presentation at the American College of Veterinary Internal Medicine Forum and Canadian Veterinary Medical Association Convention, Montréal, June 2009.

The authors thank Allison Klein and Brian Lantis for technical assistance.

Address correspondence to Dr. Atkins (clarke_atkins@ncsu.edu).