Associations of horse age, joint type, and osteochondral injury with serum and synovial fluid concentrations of type II collagen biomarkers in Thoroughbreds

Anne M. Nicholson Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108

Search for other papers by Anne M. Nicholson in
Current site
Google Scholar
PubMed
Close
 DVM, MS
,
Troy N. Trumble Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108

Search for other papers by Troy N. Trumble in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Kelly A. Merritt Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610

Search for other papers by Kelly A. Merritt in
Current site
Google Scholar
PubMed
Close
 BS
, and
Murray P. Brown Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610

Search for other papers by Murray P. Brown in
Current site
Google Scholar
PubMed
Close
 DVM, MSc

Abstract

Objective—To determine the effects of horse age, osteochondral injury, and joint type on a synthesis biomarker and 3 degradative biomarkers of type II collagen in Thoroughbreds.

Animals—Healthy rested adult (3- to 12-year-old) Thoroughbreds (n = 19), yearling (1- to 2-year-old) Thoroughbreds (40), and Thoroughbred racehorses (2 to 7 years old) undergoing arthroscopic surgery for removal of osteochondral fragments that resulted from training or racing (41).

Procedures—Samples of blood and metacarpophalangeal, metatarsophalangeal, or carpal joint synovial fluid (SF) were collected from all horses. Commercially available assays were used to analyze SF and serum concentrations of type II collagen biomarkers of synthesis (carboxy propeptide of type II collagen [CPII]) and degradation (cross-linked C-telopeptide fragments of type II collagen [CTX II], neoepitope generated by collagenase cleavage of type I and II collagen [C1,2C], and neoepitope generated by collagenase cleavage of type II collagen [C2C]).

Results—Osteochondral injury affected concentrations of CPII, CTX II, C1,2C, and C2C in SF, serum, or both, compared with concentrations in healthy adult horses. Compared with adult horses, yearling horses had increased SF or serum concentrations of degradative biomarkers (CTX II, C1,2C, and C2C). Concentrations were higher in carpal than metacarpophalangeal or metatarsophalangeal joints for all biomarkers in osteochondral-injured horses. Variable differences in SF concentrations between joint types were detected in healthy adult and yearling horses.

Conclusions and Clinical Relevance—Horse age, osteochondral injury, and joint type all significantly affected type II collagen biomarker concentrations in SF and serum of Thoroughbreds.

Abstract

Objective—To determine the effects of horse age, osteochondral injury, and joint type on a synthesis biomarker and 3 degradative biomarkers of type II collagen in Thoroughbreds.

Animals—Healthy rested adult (3- to 12-year-old) Thoroughbreds (n = 19), yearling (1- to 2-year-old) Thoroughbreds (40), and Thoroughbred racehorses (2 to 7 years old) undergoing arthroscopic surgery for removal of osteochondral fragments that resulted from training or racing (41).

Procedures—Samples of blood and metacarpophalangeal, metatarsophalangeal, or carpal joint synovial fluid (SF) were collected from all horses. Commercially available assays were used to analyze SF and serum concentrations of type II collagen biomarkers of synthesis (carboxy propeptide of type II collagen [CPII]) and degradation (cross-linked C-telopeptide fragments of type II collagen [CTX II], neoepitope generated by collagenase cleavage of type I and II collagen [C1,2C], and neoepitope generated by collagenase cleavage of type II collagen [C2C]).

Results—Osteochondral injury affected concentrations of CPII, CTX II, C1,2C, and C2C in SF, serum, or both, compared with concentrations in healthy adult horses. Compared with adult horses, yearling horses had increased SF or serum concentrations of degradative biomarkers (CTX II, C1,2C, and C2C). Concentrations were higher in carpal than metacarpophalangeal or metatarsophalangeal joints for all biomarkers in osteochondral-injured horses. Variable differences in SF concentrations between joint types were detected in healthy adult and yearling horses.

Conclusions and Clinical Relevance—Horse age, osteochondral injury, and joint type all significantly affected type II collagen biomarker concentrations in SF and serum of Thoroughbreds.

All Time Past Year Past 30 Days
Abstract Views 104 0 0
Full Text Views 457 230 16
PDF Downloads 252 128 10
Advertisement