Analysis of gene expression in brain tissue from Greyhounds with meningoencephalitis

Kimberly A. Greer School of Natural Sciences and Mathematics, Indiana University East, Richmond, IN 47374.

Search for other papers by Kimberly A. Greer in
Current site
Google Scholar
PubMed
Close
 PhD
,
Paul Daly Section of Veterinary Pathobiology & Infectious Disease, School of Agriculture, Food Science & Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

Search for other papers by Paul Daly in
Current site
Google Scholar
PubMed
Close
 PhD
,
Keith E. Murphy Department of Genetics and Biochemistry, College of Engineerng and Science, Clemson University, Clemson, SC 29364.

Search for other papers by Keith E. Murphy in
Current site
Google Scholar
PubMed
Close
 PhD
, and
John J. Callanan Section of Veterinary Pathobiology & Infectious Disease, School of Agriculture, Food Science & Veterinary Medicine; and Conway Institute of Molecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

Search for other papers by John J. Callanan in
Current site
Google Scholar
PubMed
Close
 MVB, PhD

Abstract

Objective—To elucidate the pathogenesis of Greyhound meningoencephalitis by evaluating gene expression in diseased brain tissue.

Animals—Cadavers of 3 diseased (8- to 15-month-old) and 3 (10-month-old) control Greyhounds.

Procedures—Samples of RNA were extracted from brain tissue of all dogs and evaluated by use of a canine-specific microarray.

Results—A unique profile involving significant alterations in expression of 21 genes was evident in diseased dogs, compared with expression in control dogs. Most genes with up-regulated expression were related to immune function, with the remaining genes involved in ligand binding, signal transduction, transcriptional regulation, and formation and transportation of proteins including enzymes. Of notable involvement were genes encoding for major histocompatibility complexes, small inducible cytokine A5 precursor, myxovirus-resistant proteins, and components of the classical complement pathway, which are all genes common to pathways of viral infections and autoimmunity.

Conclusions and Clinical Relevance—Although results of microarray analysis did not clearly define a potential etiology of Greyhound meningoencephalitis, they did highlight a consistent gene alteration signature that would suggest a common etiology and pathogenesis for this condition.

Abstract

Objective—To elucidate the pathogenesis of Greyhound meningoencephalitis by evaluating gene expression in diseased brain tissue.

Animals—Cadavers of 3 diseased (8- to 15-month-old) and 3 (10-month-old) control Greyhounds.

Procedures—Samples of RNA were extracted from brain tissue of all dogs and evaluated by use of a canine-specific microarray.

Results—A unique profile involving significant alterations in expression of 21 genes was evident in diseased dogs, compared with expression in control dogs. Most genes with up-regulated expression were related to immune function, with the remaining genes involved in ligand binding, signal transduction, transcriptional regulation, and formation and transportation of proteins including enzymes. Of notable involvement were genes encoding for major histocompatibility complexes, small inducible cytokine A5 precursor, myxovirus-resistant proteins, and components of the classical complement pathway, which are all genes common to pathways of viral infections and autoimmunity.

Conclusions and Clinical Relevance—Although results of microarray analysis did not clearly define a potential etiology of Greyhound meningoencephalitis, they did highlight a consistent gene alteration signature that would suggest a common etiology and pathogenesis for this condition.

Contributor Notes

Address correspondence to Dr. Callanan (sean.callanan@ucd.ie).
  • 1.

    Kennedy PG. Viral encephalitis. J Neurol 2005;252:268272.

  • 2.

    Steiner I, Budka H, Chaudhuri A, et alViral encephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol 2005;12:331343.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Theil D, Fatzer R, Schiller I, et alNeuropathological and aetiological studies of sporadic non-suppurative meningoencephalitis of cattle. Vet Rec 1998;143:244249.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Pennycott TW, Gough RE, Wood AM, et alEncephalitis of unknown aetiology in young starlings (Sturnus vulgaris) and house sparrows (Passer domesticus). Vet Rec 2002;151:213214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gavier-Widen D, Brojer C, Dietz HH, et alInvestigations into shaking mink syndrome: an encephalomyelitis of unknown cause in farmed mink (Mustela vison) kits in Scandinavia. J Vet Diagn Invest 2004;16:305312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Oleksyk TK, Goldfarb LG, Sivtseva T, et alEvaluating association and transmission of eight inflammatory genes with Viliuisk encephalomyelitis susceptibility. Eur J Immunogenet 2004;31:121128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Watson PJ, Scholes SF. Polioencephalomyelitis of unknown aetiology in a heifer. Vet Rec 2004;154:766777.

  • 8.

    Monette S, Dallaire AD, Mingelbier M, et alMassive mortality of common carp (Cyprinus carpio carpio) in the St. Lawrence River in 2001: diagnostic investigation and experimental induction of lymphocytic encephalitis. Vet Pathol 2006;43:302310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 2000;287:443449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McCormack JG. Hendra, Menangle and Nipah viruses. Aust N Z J Med 2000;30:910.

  • 11.

    Johnson RT. Emerging viral infections of the nervous system. J Neurovirol 2003;9:140147.

  • 12.

    Kennedy PG. Viral encephalitis: causes, differential diagnosis, and management. J Neurol Neurosurg Psychiatry 2004;75(suppl 1):1015.

  • 13.

    Summers BA, Cummings JF, deLahunta A. Inflammatory diseases of the central nervous system. In: Summers BA, Cummings JF, deLahunta A, eds. Veterinary neuropathology. St Louis: Mosby, 1995;95188.

    • Search Google Scholar
    • Export Citation
  • 14.

    Braund KG. Inflammatory diseases of the central nervous system. In: Braund KG, ed. Clinical neurology in small animals—localization, diagnosis and treatment. Ithaca, NY: International Veterinary Information Services, 2003.

    • Search Google Scholar
    • Export Citation
  • 15.

    Callanan JJ, Mooney CT, Mulcahy G, et alA novel nonsuppurative meningoencephalitis in young Greyhounds in Ireland. Vet Pathol 2002;39:5665.

  • 16.

    Cordy DR, Holliday TA. A necrotizing meningoencephalitis of pug dogs. Vet Pathol 1989;26:191194.

  • 17.

    Tipold A, Fatzer R, Jaggy A, et alNecrotizing encephalitis in Yorkshire terriers. J Small Anim Pract 1993;34:623628.

  • 18.

    Stalis IH, Chadwick B, Dayrell-Hart B, et alNecrotizing meningoencephalitis of Matlese dogs. Vet Pathol 1995;32:230235.

  • 19.

    Kuwamura M, Adachi T, Yamate J, et alNecrotizing encephalitis in the Yorkshire terrier: a case report and literature review. J Small Anim Pract 2002;43:459463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Schatzberg SJ, Haley NJ, Barr C, et alPolymerase chain reaction screening for DNA viruses in paraffin-embedded brains from dogs with necrotizing meningoencephalitis, necrotizing leukoencephalitis, and granulomatous meningoencephalitis. J Vet Intern Med 2005;19:553559.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Daly P, Drudy D, Chalmers WSK, et alGreyhound meningoencephalitis: PCR-based detection methods highlight an absence of the most likely primary inducing agents. Vet Microbiol 2006;118:189200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Kipar A, Baumgartner W, Vogl C, et alImmunohistochemical characterization of inflammatory cells in brains of dogs with granulomatous meningoencephalitis. Vet Pathol 1998;35:4352.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Uchida K, Hasegawa T, Ikeda M, et alDetection of an autoantibody from pug dogs with necrotizing encephalitis (Pug dog encephalitis). Vet Pathol 1999;36:301307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Matsuki N, Fujiwara K, Tamahara S, et alPrevalence of autoantibodies in cerebrospinal fluids from dogs with various CNS diseases. J Vet Med Sci 2004;66:295297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pennie WD. Use of cDNA microarrays to probe and understand the toxicological consequences of altered gene expression. Toxicol Lett 2000;112–113:473477.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ulrich R, Friend SH. Toxicogenomics and drug discovery: will new technologies help us produce better drugs. Nat Rev Drug Discov 2002;1:8488.

  • 27.

    Baker TK, Higgins MA, Carfagna MA, et alCharacterisation of hepatocytes amd their use as a model of toxicogenomics. In: Burczynski ME, ed. Introduction to toxicogenomics. Boca Raton, Fla: CRC Press, 2003;117143.

    • Search Google Scholar
    • Export Citation
  • 28.

    Greer KA, Higgins MA, Cox ML, et alGene expression analysis in a canine model of X-linked Alport syndrome. Mamm Genome 2006;17:976990.

  • 29.

    Shelton GD, Hoffman EP, Ghimbovschi S, et alImmunopathogenic pathways in canine inflammatory myopathies resemble human myositis. Vet Immunol Immunopathol 2006;113:200214.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Higgins MA, Berridge BR, Mills BJ, et alGene expression analysis of the acute phase response using canine microarray. Toxicol Sci 2003;74:470484.

  • 31.

    Kirkness EF, Bafna V, Halpern AL, et alThe dog genome: survey sequencing and comparative analysis. Science 2003;301:18981903.

  • 32.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Method 1995;57:289300.

    • Search Google Scholar
    • Export Citation
  • 33.

    Dallas PB, Gottardo NG, Firth MJ, et alGene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR—how well do they correlate? BMC Genomics 2005;6:59.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Clark LA, Wahl JM, Steiner JM, et alLinkage analysis and gene expression profile of pancreatic acinar atrophy in the German Shepherd Dog. Mamm Genome 2005;16:955962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Thomson SA, Kennerly E, Olby N, et alMicroarray analysis of differentially expressed genes of primary tumors in the canine central nervous system. Vet Pathol 2005;42:550558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Ruiz P, Witt H. Microarray analysis to evaluate different animal models for human heart failure. J Mol Cell Cardiol 2006;40:1315.

  • 37.

    Sui Y, Potula R, Pinson D, et alMicroarray analysis of cytokine and chemokine genes in the brains of macaques and SHIV-encephalitis. J Med Primatol 2003;32:229239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Gebicke-Haerter PJ. Microarrays and expression profiling in microglia research and in inflammatory brain disorders. J Neurosci Res 2005;81:327341.

  • 39.

    Yuen T, Ebersole BJ, Zhang W, et alMonitoring G-protein-coupled receptor signaling with DNA microarrays and real-time polymerase chain reaction. Methods Enzymol 2002;345:556569.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Wagner JL. Molecular organization of the canine major histocompatibility complex. J Hered 2003;94:2326.

  • 41.

    Coates S, Brady J, Worrell S, et alImmunohistochemical characterization of the CNS cell infiltrations in greyhound meningoencephalitis, in Proceedings. 24th Annu Meet Eur Soc Vet Pathol 2006;9495.

    • Search Google Scholar
    • Export Citation
  • 42.

    Wagner JL, Burnett RC, Storb R. Organization of the canine major histocompatibility complex: current perspectives. J Hered 1999;90:3538.

  • 43.

    Klein J, Sato A. The HLA system. N Engl J Med 2000;343:782786.

  • 44.

    Graumann MB, DeRose SA, Ostrander E, et alPolymorphism analysis of four canine class I genes. Tissue Antigens 1998;51:374381.

  • 45.

    Mirandola P, Sponzilli I, Solenghi E, et alDown-regulation of human leukocyte antigen class I & II and β2-microglobulin expression in human herpesvirus-7-infected cells. J Infect Dis 2006;193:917926.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Ubogu EE, Callahan MK, Tucky BH, et alDeterminants of CCL-5 driven mononuclear cell migration across the blood-brain barrier. Implications for therapeutically modulation neuroinflammation. J Neuroimmunol 2006;179:132144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Ransohoff RM. The chemokine system in neuroinflammation: an update. J Infect Dis 2002;186(suppl 2):S152S156.

  • 48.

    Zhou A, Paranjape JM, Der SD, et alInterferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 1999;258:435440.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Lee S-H, Vidal SM. Functional diversity of Mx proteins: variations on a theme of host resistance to infection. Genome Res 2002;12:527530.

  • 50.

    Arnheiter H, Frese M, Kambadu R, et alMx transgenic mice: animal models of health. Curr Top Microbiol Immunol 1996;206:119147.

  • 51.

    Anton LC, Schubert U, Bacik I, et alIntracellular localization of proteasomal degradation of a viral antigen. J Cell Biol 1999;146:113124.

  • 52.

    Selmi C, lleo A, Zuin M, et alInterferon alpha and its contribution to autoimmunity. Curr Opin Investig Drugs 2006;7:451456.

  • 53.

    Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. J Biol Chem 1999;274:3201532022.

  • 54.

    Jones SL, Wang J, Turck CW, et alA role for the actin-binding protein L-plastin in the regulation of leukocyte integrin function. Proc Natl Acad Sci U S A 1998;95:93319336.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Wabnitz GH, Kocher T, Lohneis P, et alCostimulation induced phosphorylation of L-plastin facilitates surface transport of the T cell activation molecules CD69 and CD25. Eur J Immunol 2007;37:649662.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Meixner A, Haverkamp S, Wassle H, et alMAP1B is required for axon guidance and is involved in the development of the central and peripheral nervous system. J Cell Biol 2000;151:11691178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 57.

    Masliah E, Roberts ES, Langford D, et alPatterns of gene dysregulation in the fronal cortex of patients with HIV encephalitis. J Neuroimmunol 2004;157:163175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Everall I, Salaria S, Roberts E, et alMethamphetamine stimulates interferon-inducible genes in HIV infected brain. J Neuroimmunol 2005;170:158171.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Dickson PW, Howlett GJ, Schreiber G. Rat transthyretin (prealbumin). J Biol Chem 1985;260:82148219.

  • 60.

    Marques F, Sousa JC, Correia-Neves M, et alThe choroid plexus response to peripheral inflammatory stimulus. Neuroscience 2007;144:424430.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Francis K, van Beek J, Canova C, et alInnate immunity and brain inflammation: the key role of complement. Expert Rev Mol Med 2003;5:119.

  • 62.

    Ackermann MR. Acute inflammation. In: McGavin MD, Zachery JF, eds. Pathologic basis of veterinary disease. 4th ed. St Louis: Mosby Elsvier, 2007;124.

    • Search Google Scholar
    • Export Citation
  • 63.

    Dietzschold B, Schwaeble W, Schäfer MK, et alExpression of C1q, a subcomponent of the rat complement system, is dramatically enhanced in brains of rats with either Borna disease or experimental allergic encephalomyelitis. J Neurol Sci 1995;130:1116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Depboylu C, Schafer MK-H, Schwaeble WJ, et alIncrease of C1q biosynthesis in brain microglia and macrophages during lentivirus infection in the rhesus macaque is sensitive to antiretroviral treatment with 6-chloro-2′,3′-dideoxyguanosine. Neurobiol Dis 2005;20:1226.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Liu D, Lu F, Qin G, et alC1 inhibitor-mediated protection from sepsis. J Immunol 2007;179:39663972.

  • 66.

    Pascual M, Vicente M, Monferrer L, et alThe muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing. Differentiation 2006;74:6580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    van Spriel AB, Puls KL, Sofi M, et alA regulatory role for CD37 in T cell proliferation. J Immunol 2004;172:29532961.

  • 68.

    Zimmer DB, Chaplin J, Baldwin A, et alS100-mediated signal transduction in the nervous system and neurological diseases. Cell Mol Biol 2005;51:201214.

    • Search Google Scholar
    • Export Citation
  • 69.

    Heizmann CW, Ackermann GE, Galichet A. Pathologies involving the S100 proteins and RAGE. Subcell Biochem 2007;45:93138.

Advertisement