Correlation of signal attenuation–based quantitative magnetic resonance imaging with quantitative computed tomographic measurements of subchondral bone mineral density in metacarpophalangeal joints of horses

Julien Olive Département des Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.

Search for other papers by Julien Olive in
Current site
Google Scholar
PubMed
Close
 DMV, MSc
,
Marc-André d'Anjou Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.

Search for other papers by Marc-André d'Anjou in
Current site
Google Scholar
PubMed
Close
 DMV
,
Kate Alexander Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.

Search for other papers by Kate Alexander in
Current site
Google Scholar
PubMed
Close
 DMV, MS
,
Guy Beauchamp Département des Pathologie, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.

Search for other papers by Guy Beauchamp in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Christine L. Theoret Département des Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 7C6, Canada.

Search for other papers by Christine L. Theoret in
Current site
Google Scholar
PubMed
Close
 DMV, PhD

Abstract

Objective—To evaluate the ability of signal attenuation–based quantitative magnetic resonance imaging (QMRI) to estimate subchondral bone mineral density (BMD) as assessed via quantitative computed tomography (QCT) in osteoarthritic joints of horses.

Sample Population—20 metacarpophalangeal joints from 10 horse cadavers.

Procedures—Magnetic resonance (MR) images (dorsal and transverse T1-weighted gradient recalled echo [GRE] and dorsal T2*-weighted GRE fast imaging employing steady-state acquisition [T2*-FIESTA]) and transverse single-slice computed tomographic (CT) images of the joints were acquired. Magnetic resonance signal intensity (SI) and CT attenuation were quantified in 6 regions of interest (ROIs) in the subchondral bone of third metacarpal condyles. Separate ROIs were established in the air close to the joint and used to generate corrected ratios and SIs. Computed tomographic attenuation was corrected by use of a calibration phantom to obtain a K2HPO4-equivalent density of bone. Correlations between QMRI performed with different MR imaging sequences and QCT measurements were evaluated. The intraobserver repeatability of ROI measurements was tested for each modality.

Results—Measurement repeatability was excellent for QCT (R2 = 98.3%) and QMRI (R2 = 98.8%). Transverse (R2 = 77%) or dorsal (R2 = 77%) T1-weighted GRE and QCT BMD measurements were negatively correlated, as were dorsal T2*-FIESTA and QCT (R2 = 80%) measurements. Decreased bone SI during MR imaging linearly reflected increased BMD.

Conclusions and Clinical Relevance—Results of this ex vivo study suggested that signal attenuation–based QMRI was a reliable, clinically applicable method for indirect estimation of subchondral BMD in osteoarthritic metacarpophalangeal joints of horses.

Abstract

Objective—To evaluate the ability of signal attenuation–based quantitative magnetic resonance imaging (QMRI) to estimate subchondral bone mineral density (BMD) as assessed via quantitative computed tomography (QCT) in osteoarthritic joints of horses.

Sample Population—20 metacarpophalangeal joints from 10 horse cadavers.

Procedures—Magnetic resonance (MR) images (dorsal and transverse T1-weighted gradient recalled echo [GRE] and dorsal T2*-weighted GRE fast imaging employing steady-state acquisition [T2*-FIESTA]) and transverse single-slice computed tomographic (CT) images of the joints were acquired. Magnetic resonance signal intensity (SI) and CT attenuation were quantified in 6 regions of interest (ROIs) in the subchondral bone of third metacarpal condyles. Separate ROIs were established in the air close to the joint and used to generate corrected ratios and SIs. Computed tomographic attenuation was corrected by use of a calibration phantom to obtain a K2HPO4-equivalent density of bone. Correlations between QMRI performed with different MR imaging sequences and QCT measurements were evaluated. The intraobserver repeatability of ROI measurements was tested for each modality.

Results—Measurement repeatability was excellent for QCT (R2 = 98.3%) and QMRI (R2 = 98.8%). Transverse (R2 = 77%) or dorsal (R2 = 77%) T1-weighted GRE and QCT BMD measurements were negatively correlated, as were dorsal T2*-FIESTA and QCT (R2 = 80%) measurements. Decreased bone SI during MR imaging linearly reflected increased BMD.

Conclusions and Clinical Relevance—Results of this ex vivo study suggested that signal attenuation–based QMRI was a reliable, clinically applicable method for indirect estimation of subchondral BMD in osteoarthritic metacarpophalangeal joints of horses.

Contributor Notes

Dr. Olive's present address is Service d'Imagerie Médicale, VetAgro Sup–Campus Vétérinaire, Université de Lyon, 1 Ave Bourgelat, Marcy l'Etoile F-69280, France.

Supported by a grant from the Association des Vétérinaires Equins du Québec (AVEQ).

Presented in part as an abstract at the American College of Veterinary Radiology Annual Scientific Meeting, San Antonio, Tex, October 2008.

The authors thank Sonia Bernier, Suzie Lachance, Eric Norman Carmel, and Martin Guillot for technical assistance.

Address correspondence to Dr. d'Anjou (marc-andre.danjou@umontreal.ca).
  • 1.

    Young BD, Samii VF, Mattoon JS, et al.Subchondral bone density and cartilage degeneration patterns in osteoarthritic metacarpal condyles of horses. Am J Vet Res 2007;68:841849.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Blumenkrantz G, Lindsey CT, Dunn TC, et al.A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage 2004;12:9971005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lindsey CT, Narasimhan A, Adolfo JM, et al.Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage 2004;12:8696.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Barr ED, Pinchbeck GL, Clegg PD, et al.Post mortem evaluation of palmar osteochondral disease (traumatic osteochondrosis) of the metacarpo/metatarsophalangeal joint in Thoroughbred racehorses. Equine Vet J 2009;41:366371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Riggs CM, Whitehouse GH, Boyde A. Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse. Equine Vet J 1999;31:140148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Norrdin RW, Kawcak CE, Capwell BA, et al.Subchondral bone failure in an equine model of overload arthrosis. Bone 1998;22:133139.

  • 7.

    Karsdal MA, Leeming DJ, Dam EB, et al.Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage 2008;16:638646.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Rubio-Martínez LM, Cruz AM, Gordon K, et al.Structural characterization of subchondral bone in the distal aspect of third metacarpal bones from Thoroughbred racehorses via micro–computed tomography. Am J Vet Res 2008;69:14131422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Engelke K, Adams JE, Armbrecht G, et al.Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 2008;11:123162.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lewis CW, Williamson AK, Chen AC, et al.Evaluation of subchondral bone mineral density associated with articular cartilage structure and integrity in healthy equine joints with different functional demands. Am J Vet Res 2005;66:18231829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Guglielmi G, Grimston SK, Fischer KC, et al.Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 1994;192:845850.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Adams J, Alsop C, Harrison E, et al.Quantitative computed tomography (QCT): the forgotten gold standard? J Bone Miner Res 2000;15:169.

  • 13.

    Drum MG, Les CM, Park RD, et al.Correlation of quantitative computed tomographic subchondral bone density and ash density in horses. Bone 2009;44:316319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Phan CM, Matsuura M, Bauer JS, et al.Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 2006;239:488496.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Brismar TB. MR relaxometry of lumbar spine, hip, and calcaneus in healthy premenopausal women: relationship with dual energy X-ray absorptiometry and quantitative ultrasound. Eur Radiol 2000;10:12151221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Chung H, Wehrli FW, Williams JL, et al.Relationship between NMR transverse relaxation, trabecular bone architecture, and strength. Proc Natl Acad Sci U S A 1993;90:1025010254.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Fernandez-Seara MA, Song HK, Wehrli FW. Trabecular bone volume fraction mapping by low-resolution MRI. Magn Reson Med 2001;46:103113.

  • 18.

    Hatipoglu HG, Selvi A, Ciliz D, et al.Quantitative and diffusion MR imaging as a new method to assess osteoporosis. AJNR Am J Neuroradiol 2007;28:19341937.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hong J, Hipp JA, Mulkern RV, et al.Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int 2000;66:7478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kröger H, Vainio P, Nieminen J. Estimation of spinal bone density using conventional MRI. Comparison between MRI and DXA in 32 subjects. Acta Orthop Scand 1995;66:532534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Krug R, Carballido-Gamio J, Burghardt AJ, et al.Assessment of trabecular bone structure comparing magnetic resonance imaging at 3 Tesla with high-resolution peripheral quantitative computed tomography ex vivo and in vivo. Osteoporos Int 2008;19:653661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Link TM, Majumdar S, Augat P, et al.In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998;13:11751182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Machann J, Raible A, Schnatterbeck P, et al.Osteodensitometry of human heel bones by MR spin-echo imaging: comparison with MR gradient-echo imaging and quantitative computed tomography. J Magn Reson Imaging 2001;14:147155.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Majumdar S, Genant HK. A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis. Osteoporos Int 1995;5:7992.

  • 25.

    Wehrli FW, Hwang SN, Ma J, et al.Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 1998;206:347357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Yablonskiy DA, Reinus WR, Stark H, et al.Quantitation of T2' anisotropic effects on magnetic resonance bone mineral density measurement. Magn Reson Med 1997;37:214221.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 2007;25:390409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Wehrli FW, Song HK, Saha PK, et al.Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006;19:731764.

  • 29.

    Majumdar S, Thomasson D, Shimakawa A, et al.Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies. Magn Reson Med 1991;22:111127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Beuf O, Ghosh S, Newitt DC, et al.Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum 2002;46:385393.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Bolbos RI, Zuo J, Banerjee S, et al.Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3T. Osteoarthritis Cartilage 2008;16:11501159.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lammentausta E, Hakulinen MA, Jurvelin JS, et al.Prediction of mechanical properties of trabecular bone using quantitative MRI. Phys Med Biol 2006;51:61876198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    van Harreveld PD, Lillich JD, Kawcak CE, et al.Effects of immobilization followed by remobilization on mineral density, histomorphometric features, and formation of the bones of the metacarpophalangeal joint in horses. Am J Vet Res 2002;63:276281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Walker JE, Lewis CW, MacLeay JM, et al.Assessment of subchondral bone mineral density in equine metacarpophalangeal and stifle joints. Biomed Sci Instrum 2004;40:272276.

    • Search Google Scholar
    • Export Citation
  • 35.

    Cornelissen BP, van Weeren PR, Ederveen AG, et al.Influence of exercise on bone mineral density of immature cortical and trabecular bone of the equine metacarpus and proximal sesamoid bone. Equine Vet J Suppl 1999;(31):7985.

    • Search Google Scholar
    • Export Citation
  • 36.

    Drum MG, Kawcak CE, Norrdin RW, et al.Comparison of gross and histopathologic findings with quantitative computed tomographic bone density in the distal third metacarpal bone of racehorses. Vet Radiol Ultrasound 2007;48:518527.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Kawcak CE, McIlwraith CW, Norrdin RW, et al.Clinical effects of exercise on subchondral bone of carpal and metacarpophalangeal joints in horses. Am J Vet Res 2000;61:12521258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Spriet MP, Girard CA, Foster SF, et al.Validation of a 40 MHz B-scan ultrasound biomicroscope for the evaluation of osteoarthritis lesions in an animal model. Osteoarthritis Cartilage 2005;13:171179.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Noyes FR, Stabler CL. A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 1989;17:505513.

  • 40.

    McGibbon CA, Trahan CA. Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study. Osteoarthritis Cartilage 2003;11:483493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    CT Calibration Phantom user's guide. San Francisco: Mindways Software, 2002.

  • 42.

    Bouchgua M, Alexander K, Carmel EN, et al.Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis—part II: bone mineral density assessment. Osteoarthritis Cartilage 2009;17:197204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Eckstein F, Cicuttini F, Raynauld JP, et al.Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 2006;14 (suppl A):A46A75.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Peterfy CG, Gold G, Eckstein F, et al.MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage 2006;14 (suppl A):A95A111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Wehrli FW, Hilaire L, Fernandez-Seara M, et al.Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 2002;17:22652273.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Curry TS, Dowdey JE, Murry RC. Computed tomography. In: Curry TS, Dowdey JE, Murry RC. Christensen's physics of diagnostic radiology. Philadelphia: Lea & Febiger, 1990;19:289322.

    • Search Google Scholar
    • Export Citation
  • 47.

    Riggs CM, Whitehouse GH, Boyde A. Structural variation of the distal condyles of the third metacarpal and third metatarsal bones in the horse. Equine Vet J 1999;31:130139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Martig S, Boisclair J, Konar M, et al.MRI characteristics and histology of bone marrow lesions in dogs with experimentally induced osteoarthritis. Vet Radiol Ultrasound 2007;48:105112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Murray RC, Blunden TS, Schramme MC, et al.How does magnetic resonance imaging represent histologic findings in the equine digit? Vet Radiol Ultrasound 2006;47:1731.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Zanetti M, Bruder E, Romero J, et al.Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000;215:835840.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    d'Anjou MA, Troncy E, Moreau M, et al.Temporal assessment of bone marrow lesions on magnetic resonance imaging in a canine model of knee osteoarthritis: impact of sequence selection. Osteoarthritis Cartilage 2008;16:13071311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Olive J, d'Anjou MA, Alexander K, et al.Comparison of magnetic resonance imaging, computed tomography, and radiography for assessment of noncartilaginous changes in equine metacarpophalangeal osteoarthritis [published online ahead of print Jan 29, 2010]. Vet Radiol Ultrasound doi:10.1111/j.1740–8261.2009.01653.x.

    • Search Google Scholar
    • Export Citation
  • 53.

    Machann J, Schnatterbeck P, Raible A, et al.Magnetic resonance osteodensitometry in human heel bones: correlation with quantitative computed tomography using different measuring parameters. Invest Radiol 2000;35:393400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Becker C, Baltzer AW, Schneppenheim M, et al.Experimental validation of DXA and MRI-based bone density measurement by ash-method [in German]. Zentralbl Chir 2001;126:402406.

    • Search Google Scholar
    • Export Citation
  • 55.

    Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 1997;37:494500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Cann CE. Quantitative CT for determination of bone mineral density: a review. Radiology 1988;166:509522.

  • 57.

    Nazarian A, Snyder BD, Zurakowski D, et al.Quantitative micro-computed tomography: a non-invasive method to assess equivalent bone mineral density. Bone 2008;43:302311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Samii VF, Les Clifford M, Schulz KS, et al.Computed tomographic osteoabsorptiometry of the elbow joint in clinically normal dogs. Am J Vet Res 2002;63:11591166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Sanada S, Kawahara K, Yamamoto T, et al.New tissue substitutes representing cortical bone and adipose tissue in quantitative radiology. Phys Med Biol 1999;44:N107N112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Faulkner KG, Gluer CC, Grampp S, et al.Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data. Osteoporos Int 1993;3:3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Boyde A, Firth EC. Musculoskeletal responses of 2-year-old Thoroughbred horses to early training. 8. Quantitative back-scattered electron scanning electron microscopy and confocal fluorescence microscopy of the epiphysis of the third metacarpal bone. N Z Vet J 2005;53:123132.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement