Cappello R, Rusbridge C. Report from the Chiari-like malformation and syringohydromyelia working group. Vet Surg 2007;36:509–512.
Chiari H. Über die Veränderungen des Kleinhirnes infolge von Hydrocephalie des GroBhirnes. Dtsch Med Wochenschr 1891;17:1172–1175.
Bagley RS, Harrington ML, Tucker RL, et al. Occipital dysplasia and associated cranial spinal cord abnormalities in two dogs. Vet Radiol Ultrasound 1996;37:359–362.
Bagley RS, Silver GM, Kippenes H, et al. Syringomyelia and hydromyelia in dogs. Compend Contin Educ Pract Vet 2000;22:471–479.
Lu D, Lamb CR, Pfeiffer DU, et al. Neurological signs and results of magnetic resonance imaging in 40 Cavalier King Charles Spaniels with Chiari type 1-like malformation. Vet Rec 2003;153:260–263.
Rusbridge C, Macsweeney JE, Davies JV, et al. Syringohydromyelia in Cavalier King Charles Spaniels. J Am Anim Hosp Assoc 2000;36:34–41.
Rusbridge C. Neurological diseases of the Cavalier King Charles Spaniel. J Small Anim Pract 2005;46:265–272.
Summers BA, Cummings JF, DeLahunta A. Malformations of the central nervous system. In: Veterinary neuropathology. St Louis: Mosby, 1994;68–94.
Aydin S, Hanimoglu H, Tanriverdi T, et al. Chiari type 1 malformation in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol 2005;64:237–241.
Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold-Chiari malformation. J Neurol Sci 1981;50:29–55.
Nishikawa M, Sakamoto H, Hakuba A. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 1997;86:40–47.
Rusbridge C, Greitz D, Iskandar J. Syringomyelia: current concepts in pathogenesis, diagnosis and treatment. J Vet Intern Med 2006;20:469–479.
Churcher RK, Child G. Chiari 1/syringomyelia complex in a King Charles Spaniel. Aust Vet J 2000;78:92–95.
Oldfield EH, Muraszko K, Shawker TH, et al. Pathophysiology of syringomyelia associated with Chiari I malformation of the cerebellar tonsils. Implications for diagnosis and treatment. J Neurosurg 1994;80:3–15.
Sekula RF Jr, Jannetta PJ, Casey KF, et al. Dimensions of the posterior fossa in patients symptomatic for Chiari I malformation but without cerebellar tonsillar descent. Cerebrospinal Fluid Res 2005;2:11.
Karagöz F, Izgi N, Sencer SK. Morphometric measurements of the cranium in patients with Chiari type 1 malformation and comparison with the normal population. Acta Neurochir (Wien) 2002;144:165–171.
Milhorat TH, Chou MW, Trinidad EM, et al. Chiari 1 malformation redefined. Clinical and radiographical findings for 364 symptomatic patients. Neurosurgery 1999;44:1005–1017.
Stephan H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirnes. J Hirnforsch 1959;5:142–161.
Evans HE, ed. Miller's anatomy of the dog. 3rd ed. Philadelphia: WB Saunders Co, 1993.
García-Real I, Kass PH, Sturges BK, et al. Morphometric analysis of the cranial cavity and caudal cranial fossa in the dog: a computerized study. Vet Radiol Ultrasound 2004;45:38–45.
Nickel R, Schummer A, Seiferle E. Lehrbuch der Anatomie der Haustiere. Band IV: Nervensystem, Sinnesorgane, Endokrine Drüsen. Berlin: Parey Verlag, 1992;27–51.
Brehm HV, Loeffler K, Komeyli H. Skull forms in dogs [in German]. Anat Histol Embryol 1985;14:324–331.
Chung SC, Lee BY, Tack GR, et al. Effects of age, gender and weight on the cerebellar volume of Korean people. Brain Res 2005;1042:233–235.
Nussbaumer M. GröBenund geschlechtsabhängige Proportionen zwischen Hirn und Gesichtsschädel beim Berner Sennenhund. Z Tierzuecht Zuechtungsbiol 1985;102:65–72.
Schoenemann PT. Brain size scaling and body composition in mammals. Brain Behav Evol 2004;63:47–60.
Badie B, Mendoza D, Batzdorf U. Posterior fossa volume and response to suboccipital decompression in patients with Chiari I malformation. Neurosurgery 1995;37:214–218.
Vega A, Quintana F, Berciano J. Basichondrocranium anomalies in adult Chiari type 1 malformation—a morphometric study. J Neurol Sci 1990;99:137–145.
Dye JA, Kinder FS. A prepotent factor in the determination of skull shape. Am J Anat 1934;54:333–346.
Joe BN, Suh J, Hildebolt CF. MR volumetric measurements of the myomatous uterus. Improved reliability of stereology over linear measurements. Acad Radiol 2007;14:455–462.
Kurmis AP, Slavotinek JP, Reynolds KJ. Influence of slice thickness on the volume measurement accuracy of 3-D MR reconstructions of acrylic phantoms. Radiography 2004;4:277–285.
Xiaoqi H, Dongming L, Qiyong G. Magnetic resonance imaging based volumetry: a primary approach to unraveling the brain. Prog Nat Sci 2007;17:751–760.
Onar V, Kahveciodlu KO, Çebi V. Computed tomographic analysis of the cranial cavity and neurocranium in German Shepherd Dog (Alsatian) puppies. Veterinarski Arhiv 2002;72:57–66.
Regodon S, Franco A, Lignereux Y, et al. Skull in Pekingese dog. Tomodensitometry and sex linked difference. Rev Med Vet (Toulouse) 1992;143:745–748.
Röhrs M. Cephalisation bei Caniden. Z Zool Syst Evolutionsforsch 1986;24:300–307.
Sisson S. Carnivore osteology. In: Getty R, ed. Sisson and Grossman's the anatomy of the domestic animals. Vol 2. 5th ed. Philadelphia: WB Saunders Co, 1975;1467–1479.
Morriss-Kay GM, Wilkie AO. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 2005;207:637–653.
Ogle RC, Tholpady SS, McGlynn, et al. Regulation of cranial suture morphogenesis. Cells Tissues Organs 2004;176:54–66.
O'Rahilly R, Müller F. Embryologie und Teratologie des Menschen. Bern: Verlag Hans Huber, 1999;360–366.
Advertisement
Objective—To measure the absolute and relative volumes of cranial vaults of Cavalier King Charles Spaniels (CKCSs) and other brachycephalic dogs for the purpose of evaluating a possible association between the volume of the caudal fossa (fossa caudalis cerebri; CF) and existence of Chiari-like malformation (CLM) and syringohydromyelia in CKCSs.
Animals—40 CKCSs and 25 brachycephalic dogs.
Procedures—The intracranial vault of all dogs was evaluated via computed tomography followed by magnetic resonance imaging. Volumes of the CF and the rostral and medial fossa (fossa rostralis et medialis cerebri) were determined. The ratio of the absolute volumes was calculated as the volume index (VI).
Results—All CKCSs had cranial characteristics consistent with CLM. There were no significant differences between CKCSs and brachycephalic dogs with respect to the VI and absolute volumes of the CF and rostral and medial fossas. The CKCSs without syringohydromyelia (n = 26) had a median VI of 0.1842, and CKCSs with syringohydromyelia (14) had a median VI of 0.1805. The median VI of other brachycephalic dogs was 0.1864. The VI did not differ among these 3 groups.
Conclusions and Clinical Relevance—Results of this study suggested that descent of the cerebellum into the foramen magnum and the presence of syringohydromyelia in CKCSs are not necessarily associated with a volume reduction in the CF of the skull.