• 1.

    Wiggers CJ. The muscular reactions of the mammalian ventricles to artificial surface stimuli. Am J Physiol 1925;73:346378.

  • 2.

    Prinzen FW, Peschar M. Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing Clin Electrophysiol 2002;25:484498.

    • Search Google Scholar
    • Export Citation
  • 3.

    Zile MR, Blaustein AS, Shimizu G, et al. Right ventricular pacing reduces the rate of left ventricular relaxation and filling. J Am Coll Cardiol 1987;10:702709.

    • Search Google Scholar
    • Export Citation
  • 4.

    Fei L, Wrobleski D, Groh W, et al. Effects of multisite ventricular pacing on cardiac function in normal dogs and dogs with heart failure. J Cardiovasc Electrophysiol 1999;10:935946.

    • Search Google Scholar
    • Export Citation
  • 5.

    Nahlawi M, Waligora M, Spies SM, et al. Left ventricular function during and after right ventricular pacing. J Am Coll Cardiol 2004;44:18831888.

    • Search Google Scholar
    • Export Citation
  • 6.

    Prinzen FW, Hunter WC, Wyman BT, et al. Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 1999;33:17351742.

    • Search Google Scholar
    • Export Citation
  • 7.

    Wyman BT, Hunter WC, Prinzen FW, et al. Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 2002;282:H372H379.

    • Search Google Scholar
    • Export Citation
  • 8.

    Little WC, Reeves RC, Arciniegas J, et al. Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circulation 1982;65:14861491.

    • Search Google Scholar
    • Export Citation
  • 9.

    Maurer G, Torres MA, Corday E, et al. Two-dimensional echocardiographic contrast assessment of pacing-induced mitral regurgitation: relation to altered regional left ventricular function. J Am Coll Cardiol 1984;3:986991.

    • Search Google Scholar
    • Export Citation
  • 10.

    Erlebacher JA, Barbarash S. Intraventricular conduction delay and functional mitral regurgitation. Am J Cardiol 2001;88;A7;83A7,86.

  • 11.

    Tse HF, Lau CP. Long-term effect of right ventricular pacing on myocardial perfusion and function. J Am Coll Cardiol 1997;29:744749.

  • 12.

    Nielsen JC, Bottcher M, Nielsen TT, et al. Regional myocardial blood flow in patients with sick sinus syndrome randomized to long-term single chamber atrial or dual chamber pacing–effect of pacing mode and rate. J Am Coll Cardiol 2000;35:14531461.

    • Search Google Scholar
    • Export Citation
  • 13.

    Lee MA, Dae MW, Langberg JJ, et al. Effects of long-term right ventricular apical pacing on left ventricular perfusion, innervation, function and histology. J Am Coll Cardiol 1994;24:225232.

    • Search Google Scholar
    • Export Citation
  • 14.

    Karpawich PP, Rabah R, Haas JE. Altered cardiac histology following apical right ventricular pacing in patients with congenital atrioventricular block. Pacing Clin Electrophysiol 1999;22:13721377.

    • Search Google Scholar
    • Export Citation
  • 15.

    Karpawich PP, Justice CD, Cavitt DL, et al. Developmental sequelae of fixed-rate ventricular pacing in the immature canine heart: an electrophysiologic, hemodynamic, and histopathologic evaluation. Am Heart J 1990;119:10771083.

    • Search Google Scholar
    • Export Citation
  • 16.

    Karpawich PP, Mital S. Comparative left ventricular function following atrial, septal, and apical single chamber heart pacing in the young. Pacing Clin Electrophysiol 1997;20:19831988.

    • Search Google Scholar
    • Export Citation
  • 17.

    de Cock CC, Giudici MC, Twisk JW. Comparison of the haemodynamic effects of right ventricular outflow-tract pacing with right ventricular apex pacing: a quantitative review. Europace 2003;5:275278.

    • Search Google Scholar
    • Export Citation
  • 18.

    Buckingham TA, Candinas R, Attenhofer C, et al. Systolic and diastolic function with alternate and combined site pacing in the right ventricle. Pacing Clin Electrophysiol 1998;21:10771084.

    • Search Google Scholar
    • Export Citation
  • 19.

    Gold MR, Brockman R, Peters RW, et al. Acute hemodynamic effects of right ventricular pacing site and pacing mode in patients with congestive heart failure secondary to either ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 2000;85:11061109.

    • Search Google Scholar
    • Export Citation
  • 20.

    Cojoc A, Reeves JG, Schmarkey L, et al. Effects of single-site versus biventricular epicardial pacing on myocardial performance in an immature animal model of atrioventricular block. J Cardiovasc Electrophysiol 2006;17:884889.

    • Search Google Scholar
    • Export Citation
  • 21.

    Frias PA, Corvera JS, Schmarkey L, et al. Evaluation of myocardial performance with conventional single-site ventricular pacing and biventricular pacing in a canine model of atrioventricular block. J Cardiovasc Electrophysiol 2003;14:9961000.

    • Search Google Scholar
    • Export Citation
  • 22.

    Prinzen FW, van Oosterhout MF, Vanagt WY, et al. Optimization of ventricular function by improving the activation sequence during ventricular pacing. Pacing Clin Electrophysiol 1998;21:22562260.

    • Search Google Scholar
    • Export Citation
  • 23.

    Vanagt WY, Verbeek XA, Delhaas T, et al. The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. Pacing Clin Electrophysiol 2004;27:837843.

    • Search Google Scholar
    • Export Citation
  • 24.

    Puggioni E, Brignole M, Gammage M, et al. Acute comparative effect of right and left ventricular pacing in patients with permanent atrial fibrillation. J Am Coll Cardiol 2004;43:234238.

    • Search Google Scholar
    • Export Citation
  • 25.

    Simantirakis EN, Vardakis KE, Kochiadakis GE, et al. Left ventricular mechanics during right ventricular apical or left ventricular-based pacing in patients with chronic atrial fibrillation after atrioventricular junction ablation. J Am Coll Cardiol 2004;43:10131018.

    • Search Google Scholar
    • Export Citation
  • 26.

    Abraham WT, Fisher WG, Smith AL, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:18451853.

  • 27.

    Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004;350:21402150.

    • Search Google Scholar
    • Export Citation
  • 28.

    Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:15391549.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lieberman R, Padeletti L, Schreuder J, et al. Ventricular pacing lead location alters systemic hemodynamics and left ventricular function in patients with and without reduced ejection fraction. J Am Coll Cardiol 2006;48:16341641.

    • Search Google Scholar
    • Export Citation
  • 30.

    Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:14401463.

    • Search Google Scholar
    • Export Citation
  • 31.

    Blendea D, Shah RV, Auricchio A, et al. Variability of coronary venous anatomy in patients undergoing cardiac resynchronization therapy: a high-speed rotational venography study. Heart Rhythm 2007;4:11551162.

    • Search Google Scholar
    • Export Citation
  • 32.

    Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy: part 1–issues before device implantation. J Am Coll Cardiol 2005;46:21532167.

    • Search Google Scholar
    • Export Citation
  • 33.

    Butter C, Auricchio A, Stellbrink C, et al. Effect of resynchronization therapy stimulation site on the systolic function of heart failure patients. Circulation 2001;104:30263029.

    • Search Google Scholar
    • Export Citation
  • 34.

    Gold MR, Auricchio A, Hummel JD, et al. Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy. Heart Rhythm 2005;2:376381.

    • Search Google Scholar
    • Export Citation
  • 35.

    Mason DJ, O'Grady M, Woods JP, et al. Assessment of lithium dilution cardiac output as a technique for measurement of cardiac output in dogs. Am J Vet Res 2001;62:12551261.

    • Search Google Scholar
    • Export Citation
  • 36.

    Uehara Y, Koga M, Takahashi M. Determination of cardiac output by echocardiography. J Vet Med Sci 1995;57:401407.

  • 37.

    Bleeker GB, Schalij MJ, Molhoek SG, et al. Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol 2004;15:544549.

    • Search Google Scholar
    • Export Citation
  • 38.

    Molhoek SG, Van Erven L, Bootsma M, et al. QRS duration and shortening to predict clinical response to cardiac resynchronization therapy in patients with end-stage heart failure. Pacing Clin Electrophysiol 2004;27:308313.

    • Search Google Scholar
    • Export Citation
  • 39.

    Mollema SA, Bleeker GB, van der Wall EE, et al. Usefulness of QRS duration to predict response to cardiac resynchronization therapy in patients with end-stage heart failure. Am J Cardiol 2007;100:16651670.

    • Search Google Scholar
    • Export Citation
  • 40.

    Bleeker GB, Holman ER, Steendijk P, et al. Cardiac resynchronization therapy in patients with a narrow QRS complex. J Am Coll Cardiol 2006;48:22432250.

    • Search Google Scholar
    • Export Citation
  • 41.

    Bleeker GB, Mollema SA, Holman ER, et al. Left ventricular resynchronization is mandatory for response to cardiac resynchronization therapy: analysis in patients with echocardiographic evidence of left ventricular dyssynchrony at baseline. Circulation 2007;116:14401448.

    • Search Google Scholar
    • Export Citation
  • 42.

    Sogaard P, Egeblad H, Kim WY, et al. Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol 2002;40:723730.

    • Search Google Scholar
    • Export Citation
  • 43.

    Nishimura RA, Hayes DL, Holmes DR Jr, et al. Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization hemodynamic study. J Am Coll Cardiol 1995;25:281288.

    • Search Google Scholar
    • Export Citation
  • 44.

    Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The Pacing Therapies for Congestive Heart Failure Study Group. The Guidant Congestive Heart Failure Research Group. Circulation 1999;99:29933001.

    • Search Google Scholar
    • Export Citation
  • 45.

    Bax JJ, Abraham T, Barold SS, et al. Cardiac resynchronization therapy: part 2–issues during and after device implantation and unresolved questions. J Am Coll Cardiol 2005;46:21682182.

    • Search Google Scholar
    • Export Citation
  • 46.

    Bordachar P, Lafitte S, Reuter S, et al. Biventricular pacing and left ventricular pacing in heart failure: similar hemodynamic improvement despite marked electromechanical differences. J Cardiovasc Electrophysiol 2004;15:13421347.

    • Search Google Scholar
    • Export Citation
  • 47.

    Cazeau S, Gras D, Lazarus A, et al. Multisite stimulation for correction of cardiac asynchrony. Heart 2000;84:579581.

  • 48.

    Sogaard P, Egeblad H, Pedersen AK, et al. Sequential versus simultaneous biventricular resynchronization for severe heart failure: evaluation by tissue Doppler imaging. Circulation 2002;106:20782084.

    • Search Google Scholar
    • Export Citation
  • 49.

    Porciani MC, Dondina C, Macioce R, et al. Echocardiographic examination of atrioventricular and interventricular delay optimization in cardiac resynchronization therapy. Am J Cardiol 2005;95:11081110.

    • Search Google Scholar
    • Export Citation
  • 50.

    Andersen HR, Nielsen JC, Thomsen PE, et al. Long-term follow-up of patients from a randomised trial of atrial versus ventricular pacing for sick-sinus syndrome. Lancet 1997;350:12101216.

    • Search Google Scholar
    • Export Citation
  • 51.

    Nielsen JC, Kristensen L, Andersen HR, et al. A randomized comparison of atrial and dual-chamber pacing in 177 consecutive patients with sick sinus syndrome: echocardiographic and clinical outcome. J Am Coll Cardiol 2003;42:614623.

    • Search Google Scholar
    • Export Citation
  • 52.

    Sweeney MO, Hellkamp AS, Ellenbogen KA, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 2003;107:29322937.

    • Search Google Scholar
    • Export Citation
  • 53.

    Tantengco MV, Thomas RL, Karpawich PP. Left ventricular dysfunction after long-term right ventricular apical pacing in the young. J Am Coll Cardiol 2001;37:20932100.

    • Search Google Scholar
    • Export Citation
  • 54.

    Thambo JB, Bordachar P, Garrigue S, et al. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 2004;110:37663772.

    • Search Google Scholar
    • Export Citation
  • 55.

    Kim JJ, Friedman RA, Eidem BW, et al. Ventricular function and long-term pacing in children with congenital complete atrioventricular block. J Cardiovasc Electrophysiol 2007;18:373377.

    • Search Google Scholar
    • Export Citation
  • 56.

    Chiladakis JA, Koutsogiannis N, Kalogeropoulos A, et al. Long-term effects of atrial synchronous ventricular pacing on systolic and diastolic ventricular function in patients with normal left ventricular ejection fraction. Cardiology 2007;108:290296.

    • Search Google Scholar
    • Export Citation
  • 57.

    Ritter O, Koller ML, Fey B, et al. Progression of heart failure in right univentricular pacing compared to biventricular pacing. Int J Cardiol 2006;110:359365.

    • Search Google Scholar
    • Export Citation
  • 58.

    Schmidt M, Bromsen J, Herholz C, et al. Evidence of left ventricular dyssynchrony resulting from right ventricular pacing in patients with severely depressed left ventricular ejection fraction. Europace 2007;9:3440.

    • Search Google Scholar
    • Export Citation

Advertisement

Evaluation of the effects of transvenous pacing site on left ventricular function and synchrony in healthy anesthetized dogs

View More View Less
  • 1 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.
  • | 2 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.
  • | 3 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.
  • | 4 Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.
  • | 5 Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.

Abstract

Objective—To compare the acute effects of cardiac pacing from various transvenous pacing sites on left ventricular (LV) function and synchrony in clinically normal dogs.

Animals—10 healthy adult mixed-breed dogs.

Procedures—Dogs were anesthetized, and dual-chamber transvenous biventricular pacing systems were implanted. Dogs were paced in single-chamber mode from the right atrial appendage (RAA) alone and in dual-chamber mode from the right ventricular apex (RVA), from the left ventricular free wall (LVFW), and simultaneously from the RVA and LVFW (BiV). Standard ECG and echocardiographic measurements, cardiac output measured with the lithium dilution method (LiDCO), and tissue Doppler–derived measurements of LV synchrony were obtained during each of the pacing configurations.

Results—Placement of the biventricular pacing systems was possible in 8 of the 10 dogs. The QRS duration was significantly different among all pacing sites, and the order of increasing duration was RAA, BiV, LVFW, and RVA. Pacing sites did not differ with respect to fractional shortening; however, pacing from the RVA resulted in a significantly lower ejection fraction than pacing from all other sites. During RVA and LVFW pacing, LiDCO was significantly lower than that at other sites; there was no significant difference between RAA and BiV pacing with respect to LiDCO. Although the degree of dyssynchrony was significantly lower during pacing from the RAA versus other ventricular pacing sites, it was not significantly different among sites.

Conclusions and Clinical Relevance—Ventricular activation by RAA pacing provided the best LV function and synchrony. Pacing from the RVA worsened LV function, and although pacing from the LVFW improved it, BiV pacing may provide additional improvement.

Contributor Notes

Presented as a poster at the 25th Annual American College of Veterinary Internal Medicine Forum, Seattle, June 2007.

Supported by a resident research grant from the American College of Veterinary Internal Medicine Specialty of Cardiology.

The authors thank David Dockter and Dr. Daniel Kaiser for providing the pacing systems and training on the implantation procedure and pacemaker programming and Dr. Jesse Schold for performance of statistical analyses.

Address correspondence to Dr. Estrada.