Wei CM, Heublein DM, Perrella MA, et al. Natriuretic peptide system in human heart failure. Circulation 1993;88:1004–1009.
Schweitz H, Vigne P, Moinier D, et al. A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). J Biol Chem 1992;267:13928–13932.
Sudoh T, Minamino N, Kangawa K, et al. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 1990;168:863–870.
Martinez-Rumayor A, Richards AM, Burnett JC, et al. Biology of the natriuretic peptides. Am J Cardiol 2008;101:3–8.
McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab 2005;16:469–477.
Wei CM, Kim CH, Miller VM, et al. Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide. J Clin Invest 1993;92:2048–2052.
Meyer M, Richter R, Forssmann WG. Urodilatin, a natriuretic peptide with clinical implications. Eur J Med Res 1998;3:103–110.
Chen HH, Cataliotti A, Schirger JA, et al. Equimolar doses of atrial and brain natriuretic peptides and urodilatin have differential actions in overt experimental heart failure. Am J Physiol Regul Integr Comp Physiol 2005;288:R1093–R1097.
Schirger JA, Heublein DM, Chen HH, et al. Presence of Dendroaspis natriuretic peptide-like immunoreactivity in human plasma and its increase during human heart failure. Mayo Clin Proc 1999;74:126–130.
de Bold AJ, Borenstein HB, Veress AT, et al. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 1981;28:89–94.
Yandle TG. Biochemistry of natriuretic peptides. J Intern Med 1994;235:561–576.
Hall C, Ihlen H, Bonarjee V, et al. J. N-terminal proatrial natriuretic peptide in primary care: relation to echocardiographic indices of cardiac function in mild to moderate cardiac disease. Int J Cardiol 2003;89:197–205.
Vuolteenaho O, Arjamaa O, Ling N. Atrial natriuretic polypeptides (ANP): rat atria store high molecular weight precursor but secrete processed peptides of 25–35 amino acids. Biochem Biophys Res Commun 1985;129:82–88.
Ruskoaho H. Cardiac hormones as diagnostic tools in heart failure. Endocr Rev 2003;24:341–356.
Hall C, Aaberge L, Stokk O. In vitro stability of N-terminal proatrial natriuretic factor in unfrozen samples: an important prerequisite for its use as a biochemical parameter of atrial pressure in clinical routine. Circulation 1995;91:911.
de Bold AJ. Atrial natriuretic factor: a hormone produced by the heart. Science 1985;230:767–770.
de Bold AJ, Bruneau BG, Kuroski de Bold ML. Mechanical and neuroenocrine regulation of the endocrine heart. Cardiovasc Res 1996;31:7–18.
Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med 1998;339:321–328.
Yap LB, Astrafian H, Mukerjee D, et al. The natriuretic peptides and their role in disorders of right heart dysfunction and pulmonary hypertension. Clin Biochem 2004;37:847–856.
Turk JR. Physiologic and pathophysiologic effects of natriuretic peptides and their implications in cardiopulmonary disease. J Am Vet Med Assoc 2000;216:1970–1976.
Melo LG, Steinhelper ME, Pang SC, et al. ANP in regulation of arterial pressure and fluid-electrolyte balance: lessons from genetic mouse models. Physiol Genomics 2000;3:45–58.
Lang RE, Tholken H, Ganten D, et al. Atrial natriuretic factor—a circulating hormone stimulated by volume loading. Nature 1985;314:264–266.
Ruskoaho H, Tholken H, Lang RE. Increase in atrial pressure releases atrial natriuretic peptide from isolated perfused rat hearts. Pflugers Arch 1986;407:170–174.
de Bold AJ, Ma KK, Zhang Y, et al. The physiological and pathophysiological modulation of the endocrine function of the heart. Can J Physiol Pharmacol 2001;79:705–714.
Biondo AW, Ehrhart EJ, Sisson DD, et al. Immunohistochemistry of atrial and brain natriuretic peptides in control cats and cats with hypertrophic cardiomyopathy. Vet Pathol 2003;40:501–506.
Hall C, Cannon CP, Forman S, et al. Prognostic value of N-terminal proatrial natriuretic factor plasma levels measured within the first 12 hours after myocardial infarction. J Am Coll Cardiol 1995;26:1452–1456.
Rouleau JL, Packer M, Moyel L, et al. Prognostic value of neurohumoral activation in patients with acute myocardial infarction: effect of captopril. J Am Coll Cardiol 1994;24:583–591.
Kitaoka H, Hitomi N, Yabe T, et al. Cardiovascular events and plasma atrial natriuretic peptide level in patients with hypertrophic cardiomyopathy. Am J Cardiol 2001;87:1318–1320.
Nagaya N, Ando M, Oya H, et al. Plasma brain natriuretic peptide as a non-invasive marker for efficacy of pulmonary thromboendarterectomy. Ann Thorac Surg 2002;74:180–184.
Hara Y, Hamada M, Ohtsuka T, et al. Comparison of treatment effects of bevantolol and metoporol on cardiac function and natriuretic peptides in patients with dilated cardiomyopathy. Heart Vessels 2002;17:53–56.
Boswood A, Attree S, Page K. Clinical validation of a proANP31–67 fragment ELISA in the diagnosis of heart failure in the dog. J Small Anim Pract 2003;44:104–108.
Haggstrom J, Hansson K, Kvart C, et al. Relationship between different natriuretic peptides and severity of naturally acquired mitral regurgitation in dogs with chronic myxomatous valve disease. J Vet Cardiol 2000;2:7–16.
O'Sullivan ML, O'Grady MR, Minors SL. Plasma Big endothelin-1, atrial natriuretic peptide, aldosterone, and norepinephrin concentrations in normal Doberman pinschers and Doberman pinschers with dilated cardiomyopathy. J Vet Intern Med 2007;21:92–99.
Koie H, Kanayama K, Takeo S, et al. Evaluation of diagnostic availability of continuous ANP assay and La/Ao ratio in left heart insufficient dogs. J Vet Med Sci 2001;63:1237–1240.
MacLean HN, Abbott JA, Ward DL, et al. N-terminal atrial natriuretic peptide immunoreactivity in plasma of cats with hypertrophic cardiomyopathy. J Vet Intern Med 2006;20:284–289.
Connolly DJ, Soares Magalhaes RJ, Syme HM, et al. Circulating natriuretic peptides in cats with heart disease. J Vet Intern Med 2008;22:96–105.
Hori Y, Yamano S, Iwanaga K, et al. Evaluation of plasma C-terminal atrial natriuretic peptide in healthy cats and cats with heart disease. J Vet Intern Med 2008;22:135–139.
Thomas WP, Gaber CE, Jacobs GJ, et al. Recommendations for standards in transthoracic two-dimensional echocardiography in the dog and cat. Echocardiography Committee of the Specialty of Cardiology, American College of Veterinary Internal Medicine. J Vet Intern Med 1993;7:247–252.
Hansson K, Haggstrom J, Kvart C, et al. Left atrial to aortic root indices using two-dimensional and M-mode echocardiography in cavalier King Charles spaniels with and without left atrial enlargement. Vet Radiol Ultrasound 2002;43:568–575.
Maerz I, Schober K, Oechtering G. Echocardiographic measurment of left atrial dimension in healthy cats and cats with left ventricular hypertrophy. Tierarztl Prax 2006;34:331–340.
Biondo AW, Liu ZL, Wiedmeyer GE, et al. Genomic sequence and cardiac expression of atrial natriuretic peptide in cats. Am J Vet Res 2002;63:236–240.
Greco DS, Biller B, Van Liew CH. Measurement of plasma atrial natriuretic peptide as an indicator of prognosis in dogs with cardiac disease. Can Vet J 2003;44:293–297.
Lerman A, Gibbons RJ, Rodeheffer RJ, et al. Circulating N-terminal atrial natriuretic peptide as marker for symptomless left ventricular dysfunction. Lancet 1993;341:1105–1109.
Daggubati S, Parks JR, Overton RM, et al. Adrenomodulin, endothelin, neuropeptide Y, atrial, brain, and C-natriuretic prohormone compared as early heart failure indicators (Erratum published in Cardiovasc Res 1997;44:452–453). Cardiovasc Res 1997;36:246–255.
Davidson NC, Naas AA, Hanson JK, et al. Comparison of atrial natriuretic peptide, B-type natriuretic peptide, and N-terminal proatrial natriuretic peptide as indicators of left ventricular systolic dysfunction. Am J Cardiol 1996;77:828–831.
Azizi C, Maistre G, Kalotka H, et al. Plasma levels and molecular forms of proatrial natriuretic peptides in healthy subjects and in patients with CHF. J Endocrinol 1996;148:51–57.
Holmström H, Thaulow E, Stokke O, et al. Serum N-terminal proatrial natriuretic factor in children with congenital heart disease. Eur Heart J 1996;17:1737–1746.
Prošek R, Sisson DD, Oyama MA, et al. Distinguishing cardiac and noncardiac dyspnea in 48 dogs using plasma atrial natriuretic factor, B-type natriuretic factor, endothelin, and cardiac troponin-I. J Vet Intern Med 2007;21:238–242.
Haggstrom J, Hansson K, Karlberg BE, et al. Plasma concentration of atrial natriuretic peptide in relation to severity of mitral regurgitation in Cavalier King Charles Spaniels. Am J Vet Res 1994;55:698–703.
Tidholm A, Haggstrom J, Hansson K. Effects of dilated cardiomyopathy on the rennin-angiotensin-aldosterone system, atrial natriuretic peptide activity, and thyroid hormone concentration in dogs. Am J Vet Res 2001;62:961–967.
Gardner DG, Schultz HD. Prostaglandins regulate synthesis and secretion of the atrial natriuretic peptide. J Clin Invest 1990;86:52–59.
Witthaut R. Science review: natriuretic peptides in critical illness. Crit Care 2004;8:342–349.
Buckley MG, Marcus NJ, Yacoub MH, et al. Prolonged stability of BNP, importance for non-invasive assessment of cardiac function in clinical practice. Clin Sci (Lond) 1998;95:235–239.
Hartter E, Khalafpour S, Missbichler A, et al. Enzyme immunoassays for fragments (epitopes) of human proatrial natriuretic peptides. Clin Chem Lab Med 2000;38:27–32.
Buckley MG, Marcus NJ, Yacoub MH. Cardiac peptide stability, aprotinin and room temperature: importance for assessing cardiac function in clinical practice. Clin Sci (Lond) 1999;97:689–695.
Numata Y, Dohi K, Furukawa A, et al. Immunoradiometric assay for N-terminal fragment of proatrial natriuretic peptide in human plasma. Clin Chem 1998;44:1008–1013.
Pedersen KM, Pedersen DP, Haggstrom J, et al. Increased mean arterial pressure and aldosterone-to-renin ratio in Persian cats with polycystic kidney disease. J Vet Intern Med 2003;17:21–27.
Toma I, Sax B, Nagy A, et al. Intrapericardial angiotensin II stimulates endothelin-1 and atrial natriuretic peptide formation of the in situ dog heart. Exp Biol Med (Maywood) 2006;231:847–851.
Chetboul V, Tessier-Vetzel D, Escriou C, et al. Diagnostic potential of natriuretic peptides in the occult phase of Golden Retriever muscular dystrophy cardiomyopathy. J Vet Intern Med 2004;18:845–850.
Oyama MA, Sisson DD, Solter PF. Prospective screening for occult cardiomyopathy in dogs by measurement of plasma atrial natriuretic peptide, B-type natriuretic peptide, and cardiac troponin-I concentrations. Am J Vet Res 2007;68:42–47.
Takemura G, Fujiwara H, Mukoyama M, et al. Expression and distribution of atrial natriuretic peptide in human hypertrophic ventricle of hypertensive hearts and hearts with hypertrophic cardiomyopathy. Circulation 1991;80:1137–1147.
Colbatzky F, Vollmar A, Monch U, et al. Synthesis and distribution of atrial natriuretic peptide (ANP) in hearts from normal dogs and those with cardiac abnormalities. J Comp Pathol 1993;108:149–163.
Advertisement
Objective—To determine whether plasma N-terminal proatrial natriuretic peptide (Nt-proANP) concentrations in cats with cardiomyopathy (CM) differ from values in healthy cats and evaluate whether plasma Nt-proANP concentrations can be used to discriminate cats with CM and congestive heart failure (CHF) from CM-affected cats without CHF.
Animals—16 cats that had CM without CHF, 16 cats that had CM with CHF, and 11 healthy control cats.
Procedures—All cats underwent a physical examination, assessment of clinicopathologic variables (including plasma thyroxine concentration), thoracic radiography, and echocardiography. On the basis of findings, cats were assigned to 1 of 3 groups (control cats, cats with CM and CHF, and cats with CM without CHF). Venous blood samples were obtained from all 43 cats, and plasma Nt-proANP concentrations were measured by use of a human proANP(1-98) ELISA.
Results—Plasma Nt-proANP concentrations differed significantly among the 3 groups. Median Nt-proANP concentration was 381 fmol/mL (range, 52 to 450 fmol/mL), 763 fmol/mL (range, 167 to 2,386 fmol/mL), and 2,443 fmol/mL (range, 1,189 to 15,462 fmol/mL) in the control group, in cats with CM without CHF, and in cats with CM and CHF, respectively.
Conclusions and Clinical Relevance—Measurement of plasma Nt-proANP concentration could be of benefit in the assessment of cats with naturally occurring CM and might have potential as a screening marker for the disease. Furthermore, measurement of plasma NtproANP concentration may be useful for distinguishing cats with CM and CHF from those with CM and no CHF.
Presented in part as an abstract at the InnLab Congress, Munich, February 2007 and at the 17th Annual Congress of the European College of Veterinary Internal Medicine, Budapest, September 2007.