Cardiovascular effects of dipyrone and propofol on hemodynamic function in rabbits

Christine M. Baumgartner Centre of Preclinical Research, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.

Search for other papers by Christine M. Baumgartner in
Current site
Google Scholar
PubMed
Close
 DVM
,
Hilke Koenighaus Institute for Experimental Oncology and Therapeutic Research, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
Trigen GmbH, Fraunhoferstrasse 9, 82152 Martinsried, Germany.

Search for other papers by Hilke Koenighaus in
Current site
Google Scholar
PubMed
Close
 DVM
,
Johanna K. Ebner Trigen GmbH, Fraunhoferstrasse 9, 82152 Martinsried, Germany.

Search for other papers by Johanna K. Ebner in
Current site
Google Scholar
PubMed
Close
 DVM
,
Julia Henke Centre of Preclinical Research, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.

Search for other papers by Julia Henke in
Current site
Google Scholar
PubMed
Close
 PhD, DVM
,
Tibor Schuster Institute for Medical Statistics and Epidemiology, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.

Search for other papers by Tibor Schuster in
Current site
Google Scholar
PubMed
Close
, and
Wolf D. Erhardt Institute for Experimental Oncology and Therapeutic Research, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.

Search for other papers by Wolf D. Erhardt in
Current site
Google Scholar
PubMed
Close
 PhD, DVM

Abstract

Objective—To evaluate the short-term cardiovascular effects of IV administration of dipyrone (metamizole) as an intraoperative analgesic during total IV anesthesia with propofol.

Animals—6 healthy female New Zealand White rabbits.

Procedures—Anesthesia was induced with propofol (4.0 to 8.0 mg/kg, IV) and maintained with the same drug (1.2 to 1.3 mg/kg/min, IV). After induction, 3 doses of dipyrone (65 mg/kg each) were administered IV at 25-minute intervals. Before and for 10 minutes after each dipyrone injection, the following vascular and hemodynamic variables were recorded at the left common carotid artery every minute after the first injection: vessel diameter; peak systolic, minimum diastolic, end-diastolic, and mean blood flow velocities; mean volumetric flow; resistance and pulsatility indices; mean arterial blood pressure (MAP); heart rate; arterial oxygen saturation (SpO2); and end-tidal partial pressure of CO2 (PETCO2). Echocardiography was performed after the second injection. The same variables were measured at the abdominal aorta (AA) after the third injection.

Results—Dipyrone injections caused a significant, transient decrease in the resistance index at the AA. Also detected were a minor decrease in pulsatility index at the left common carotid artery and a minor increase in end-diastolic blood flow velocity at the AA. The MAP, heart rate, SpO2, and PETCO2 did not significantly change after injections. A comparison of HR and MAP after the first and third bolus injections revealed only minor changes.

Conclusions and Clinical Relevance—Dipyrone used with propofol anesthesia in rabbits appeared not to significantly impair cardiovascular and hemodynamic function.

Abstract

Objective—To evaluate the short-term cardiovascular effects of IV administration of dipyrone (metamizole) as an intraoperative analgesic during total IV anesthesia with propofol.

Animals—6 healthy female New Zealand White rabbits.

Procedures—Anesthesia was induced with propofol (4.0 to 8.0 mg/kg, IV) and maintained with the same drug (1.2 to 1.3 mg/kg/min, IV). After induction, 3 doses of dipyrone (65 mg/kg each) were administered IV at 25-minute intervals. Before and for 10 minutes after each dipyrone injection, the following vascular and hemodynamic variables were recorded at the left common carotid artery every minute after the first injection: vessel diameter; peak systolic, minimum diastolic, end-diastolic, and mean blood flow velocities; mean volumetric flow; resistance and pulsatility indices; mean arterial blood pressure (MAP); heart rate; arterial oxygen saturation (SpO2); and end-tidal partial pressure of CO2 (PETCO2). Echocardiography was performed after the second injection. The same variables were measured at the abdominal aorta (AA) after the third injection.

Results—Dipyrone injections caused a significant, transient decrease in the resistance index at the AA. Also detected were a minor decrease in pulsatility index at the left common carotid artery and a minor increase in end-diastolic blood flow velocity at the AA. The MAP, heart rate, SpO2, and PETCO2 did not significantly change after injections. A comparison of HR and MAP after the first and third bolus injections revealed only minor changes.

Conclusions and Clinical Relevance—Dipyrone used with propofol anesthesia in rabbits appeared not to significantly impair cardiovascular and hemodynamic function.

Contributor Notes

The authors thank Drs. Ingo Pragst and Irene Zimmer for technical assistance.

Address correspondence to Dr. Baumgartner (christine.baumgartner@liz.tu-muenchen.de).
  • 1.

    Schug SA, Manopas A. Update on the role of non-opioids for postoperative pain treatment. Best Pract Res Clin Anaesthesiol 2007;21:1530.

  • 2.

    Erhardt W. Animals with cardiovascular impairment [in German]. In: Erhardt W, Henke J, Haberstroh J, eds. Anaesthesie & Analgesie beim Klein- und Heimtier. Stuttgart, Germany: Schattauer, 2004;446.

    • Search Google Scholar
    • Export Citation
  • 3.

    Kelly JP, Kaufman DW, Shapiro S. Risks of agranulocytosis and aplastic anemia in relation to the use of cardiovascular drugs: the International Agranulocytosis and Aplastic Anemia Study. Clin Pharmacol Ther 1991;49:330341.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Erhardt W, Henke J, Kroker R. Drugs for perioperative analgesia [in German]. In: Erhardt W, Henke J, Haberstroh J, eds. Anaesthesie & Analgesie beim Klein- und Heimtier. Stuttgart, Germany: Schattauer, 2004;125126.

    • Search Google Scholar
    • Export Citation
  • 5.

    Haberstroh J, Henke J. Rabbits [in German]. In: Erhardt W, Henke J, Haberstroh J, eds. Anaesthesie & Analgesie beim Klein- und Heimtier. Stuttgart, Germany: Schattauer, 2004;629640.

    • Search Google Scholar
    • Export Citation
  • 6.

    Aeschbacher G, Webb AI. Propofol in rabbits. 1. Determination of an induction dose. Lab Anim Sci 1993;43:324327.

  • 7.

    Aeschbacher G, Webb AI. Propofol in rabbits. 2. Long-term anesthesia. Lab Anim Sci 1993;43:328335.

  • 8.

    Erhardt W, Henke J, Kroker R. Anesthetics for general anesthesia [in German]. In: Erhardt W, Henke J, Haberstroh J, eds. Anaesthesie & Analgesie beim Klein- und Heimtier. Stuttgart, Germany: Schattauer, 2004;3145.

    • Search Google Scholar
    • Export Citation
  • 9.

    Smith I, White PF, Nathanson M, et al. Propofol. An update on its clinical use. Anesthesiology 1994;81:10051043.

  • 10.

    Fish RE. Pharmacology of injectable anesthetics. In: Kohn DW, Wixson SK, White GJ, et al, eds. Anesthesia and analgesia in laboratory animals. London: Academic Press, 1997;89.

    • Search Google Scholar
    • Export Citation
  • 11.

    Mayer M, Ochmann A, Doenicke R, et al. The effect of propofol-ketamine anesthesia on hemodynamics and analgesia in comparison with propofol-fentanyl [in German]. Anaesthesist 1990;39:609616.

    • Search Google Scholar
    • Export Citation
  • 12.

    Avellaneda C, Gómez A, Martos F, et al. The effect of a single intravenous dose of metamizol 2 g, ketorolac 30 mg and propacetamol 1 g on hemodynamic parameters and postoperative pain after heart surgery. Eur J Anaesth 2000;17:8590.

    • Search Google Scholar
    • Export Citation
  • 13.

    Baumgartner C, Bollerhey M, Henke J, et al. Effects of propofol on ultrasonic indicators of haemodynamic function in rabbits. Vet Anaesth Analg 2008;35:100112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mueck-Weymann M, Wupperman T. Physiology and pathophysiology of the blood flow [in German]. In: Wupperman T, ed. Sonographie der Gefaesse. Munich: Urban & Fischer, 1999;2127.

    • Search Google Scholar
    • Export Citation
  • 15.

    Lin GS, Spratt RS. Hemodynamic imaging with pulsatility-index and resistive-index color Doppler US. Radiology 1997;204:870873.

  • 16.

    Stiegler H, Klewes PM. Haemodynamische Grundlage. In: Kubale R, Stiegler H, eds. Farbkodierte Duplexsonographie. Stuttgart, Germany: Georg Thieme Verlag, 2002;93.

    • Search Google Scholar
    • Export Citation
  • 17.

    Moise N, Fox P. Echocardiography and doppler imaging. In: Fox P, Sisson N, Moise N, eds. Textbook of canine and feline cardiology. 2nd ed. Philadelphia: WB Saunders Co, 1999;140143.

    • Search Google Scholar
    • Export Citation
  • 18.

    Tobias R, Poulsen Nautrup C. Heart [in German]. In: Poulsen Nautrup C, Tobias R, eds. Atlas und Lehrbuch der Ultraschalldiagnostik bei Hund und Katze. 3rd ed. Hannover, Germany: Schluetersche, 2001;127137.

    • Search Google Scholar
    • Export Citation
  • 19.

    Klews P. Introduction to color duplex sonography [in German]. In: Wolf K, Fobbe F, eds. Farbkodierte Duplexsonographie. Stuttgart, Germany: Georg Thieme Verlag, 1993;113.

    • Search Google Scholar
    • Export Citation
  • 20.

    Koehler E. Options and limitations of echocardiography [in German]. In: Koehler E, eds. Ein- und zweidimensionale Echokardiographie mit Dopplertechnik. 5th ed. Stuttgart, Germany: Ferdinand Enke Verlag, 1992;19.

    • Search Google Scholar
    • Export Citation
  • 21.

    Levy M, Zylber-Katz E, Rosenkranz B. Clinical pharmacokinetics of dipyrone and its metabolites. Clin Pharmacokinet 1995;28:216234.

  • 22.

    Laporte JR, Carné X, Vidal X, et al. Upper gastrointestinal bleeding in relation to previous use of analgesics and non-steroidal anti-inflammatory drugs. Catalan countries study on upper gastrointestinal bleeding. Lancet 1991;337:8589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hoigné R, Zoppi M, Sollberger J, et al. Fall in systolic blood pressure due to metamizol (dipyrone, noramidopyrine, novaminsulfone). Results from the Comprehensive Hospital Drug Monitoring Berne (CHDMB). Agents Actions Suppl 1986;19:189195.

    • Search Google Scholar
    • Export Citation
  • 24.

    Chandrasekharan NV, Dai H, Roos KL, et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A 2002;99:1392613931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Shimada SG, Otterness IG, Stitt JT. A study of the mechanism of action of the mild analgesic dipyrone. Agents Actions 1994;41:188192.

  • 26.

    Dembinska-Kieĉ A, Zmuda A, Krupinska J. Inhibition of prostaglandin synthetase by aspirin-like drugs in different microsomal preparations. Adv Prostaglandin Thromboxane Res 1976;1:99103.

    • Search Google Scholar
    • Export Citation
  • 27.

    Aguirre-Bañuelos P, Granados-Soto V. Evidence for a peripheral mechanism of action for the potentiation of the antinociceptive effect of morphine by dipyrone. J Pharmacol Toxicol Methods 1999;42:7985.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Tortoric IV, Vasquez E, Vanegas H. Naloxone partial reversal of the antinociception produced by dipyrone microinjected into the periaqueductal gray of rats. Possible involvement of medullary off- and on-cells. Brain Res 1996;725:106110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Wulf H. Perioperative analgesia [in German]. In: Diener HC, Maier C, eds. Das Schmerz-Therapie-Buch. Munich: Urban & Schwarzenberg, 1997;285287.

    • Search Google Scholar
    • Export Citation
  • 30.

    Edwards JE, Meseguer F, Faura CC, et al. Single-dose dipyrone for acute postoperative pain. Cochrane Database Syst Rev 2001;3:CD003227.

  • 31.

    Steffen P, Schuhmacher I, Weichel T, et al. Differential administration of non-opioids in postoperative analgesia, I. Quantification of the analgesic effect of metamizol using patient-controlled analgesia [in German]. Anasthesiol Intensivmed Notfallmed Schmerzther 1996;31:143147.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ban K, Kochi K, Imai K, et al. Novel Doppler technique to assess systemic vascular resistance. Circ J 2005;69:688694.

  • 33.

    Ergün H, Ayhan IH, Tulunay FC. Pharmacological characterization of metamizol-induced relaxation in phenylephrine-pre-contracted rabbit thoracic aorta smooth muscle. Gen Pharmacol 1999;33:237241.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Claeys MA, Gepts E, Camu F. Hemodynamic changes during anesthesia induced and maintained with propofol. Br J Anaesth 1988;60:39.

  • 35.

    Brüssel T, Theissen JL, Vigfusson G, et al. Hemodynamic and cardiodynamic effects of propofol and etomidate: negative inotropic properties of propofol. Anesth Analg 1989;69:3540.

    • Search Google Scholar
    • Export Citation
  • 36.

    Kucewicz JC, Huang L, Beach KW. Plethysmographic arterial waveform strain discrimination by Fisher's method. Ultrasound Med Biol 2004;30:773782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Erhardt W, Lendl C, Hipp R, et al. Pulse oximetry—a noninvasive method for direct and continuous monitoring of oxygen saturation and pulse rate—comparative studies with blood gas analysis and hemoreflectometry in the dog, swine and sheep [in German]. Berl Munch Tierarztl Wochenschr 1989;102:289292.

    • Search Google Scholar
    • Export Citation
  • 38.

    Molnar J, Weiss J, Rosenthal J. The missing second: what is the correct unit for the Bazett corrected QT interval? Am J Cardiol 1995;75:537538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Lightbown ID, Lambert JP, Edwards G, et al. Potentiation of halofantrine-induced QTc prolongation by mefloquine: correlation with blood concentrations of halofantrine. Br J Pharmacol 2001;132:197204.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Luo S, Michler K, Johnston P, et al. A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. J Electrocardiol 2004;37 (suppl):8190.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement