• 1.

    Suzuka I, Kaji H, Kaji A. Binding of specific sRNA to 30S ribosomal subunits: effects of 50S ribosomal subunits. Proc Natl Acad Sci U S A 1966;55:14831486.

    • Search Google Scholar
    • Export Citation
  • 2.

    Riond JL, Riviere JE. Doxycycline binding to plasma albumin of several species. J Vet Pharmacol Ther 1989;12:253260.

  • 3.

    Shaw DH, Rubin SI. Pharmacologic activity of doxycycline. J Am Vet Med Assoc 1986;189:808810.

  • 4.

    Schach von Wittenau M, Twomey TM. The disposition of doxycycline by man and dog. Chemotherapy 1971;16:217228.

  • 5.

    Whelton A, Schach Vo Wittenau M, Twomey TM, et al. Doxycycline pharmacokinetics in the absence of renal function. Kidney Int 1974;5:365371.

    • Search Google Scholar
    • Export Citation
  • 6.

    Baumueller A, Madsen PO. Secretion of various antimicrobial substances in dogs with experimental bacterial prostatitis. Urol Res 1977;5:215218.

    • Search Google Scholar
    • Export Citation
  • 7.

    Ole-Mapenay IM, Mitema ES, Mathio TE. Aspects of pharmacokinetics of doxycycline given to healthy and pneumonic east African dwarf goats by intramuscular injection. Vet Res Commun 1997;21:453462.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chopra I, Howe TGB, Linton KB, et al. The tetracyclines: prospects at the beginning of the 1980s. J Antimicrob Chemother 1981;8:521.

  • 9.

    Cunha BA, Sibley CM, Ristuccia AM. Doxycycline. Ther Drug Monit 1982;4:115135.

  • 10.

    Prescott JF. Tetracyclines. In: Prescott JF, Baggot DJ, Walker RD eds. Antimicrobial therapy in veterinary medicine. 3rd ed. Ames, Iowa: Iowa State University Press, 2000;275289.

    • Search Google Scholar
    • Export Citation
  • 11.

    Craig WA. Pharmacokinetic-pharmacodynamic parameters: rationale for antibiotic use in mice and men. Clin Infect Dis 1998;26:112.

  • 12.

    Bekers O, Uijtendaal EV, Beijnen JH, et al. Cyclodextrins in the pharmaceutical field. Drug Dev Ind Pharm 1991;17:15031549.

  • 13.

    Bennett JV, Brodie JL, Benner EJ, et al. Simplified, accurate method for antibiotic assay of clinical specimens. Appl Microbiol 1966;14:170177.

    • Search Google Scholar
    • Export Citation
  • 14.

    Welling PG. Drug absorption, distribution, metabolism, and excretion. In: Welling PG, ed. Pharmacokinetics, processes, mathematics and applications. ACS professional reference book. 2nd ed. Washington, DC: American Chemical Society, 1997;1134.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kabanov AV, Batrakova EV, Melik-Nubarov NS, et al. A new class of drug carriers: micelles of poly (oxyethylene)poly (oxypropylene)-poly (oxyethylene) block copolymers as microcontainers for drug targeting from blood in brain. J Control Release 1992;22:141158.

    • Search Google Scholar
    • Export Citation
  • 16.

    Tarr BD, Yalkowsky SH. A new parenteral vehicle for the administration of some poorly water soluble anti-cancer drugs. J Parenter Sci Technol 1987;41:3133.

    • Search Google Scholar
    • Export Citation
  • 17.

    Schmolka IR. Poloxamers in the pharmaceutical industry. In: Tarcha PJ, ed. Polymers of controlled drug delivery. Boca Raton, Fla: CRC Press, 1991;189214.

    • Search Google Scholar
    • Export Citation
  • 18.

    Yoshida A, Yamamoto M, Itoh T, et al. Utility of 2-hydroxypropyl-beta-cyclodextrin in an intramuscular injectable preparation of nimodipine. Chem Pharm Bull (Tokyo) 1990;38:176179.

    • Search Google Scholar
    • Export Citation
  • 19.

    Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev 1998;98:20452076.

  • 20.

    Szejtli J. Molecular entrapment and release properties of drugs by cyclodextrins and congeners. In: Smallen F, Ball L, eds. Controlled drug bioavailability. New York: John Wiley & Sons, 1985;365421.

    • Search Google Scholar
    • Export Citation
  • 21.

    Abd El-Aty AM, Goudaha A, Zhou HH. Pharmacokinetics of doxycycline after administration as a single intravenous bolus and intramuscular doses to non-lactating Egyptian goats. Pharmacol Res 2004;49:487491.

    • Search Google Scholar
    • Export Citation
  • 22.

    Ole-Mapenay IM, Mitema ES. Some pharmacokinetic parameters of doxycycline in east African goats after intramuscular administration of a long acting formula. Vet Res Commun 1995;19:425432.

    • Search Google Scholar
    • Export Citation
  • 23.

    Gilbert JC, Richardson JL, Davies MC, et al. The effect of solutes and polymers on the gelation properties of pluronic F127 solutions for controlled drug delivery. J Control Release 1987;5:113118.

    • Search Google Scholar
    • Export Citation
  • 24.

    Lawrence MJ. Surfactant systems microemulsions and vesicles as vehicles for drug delivery. Eur J Drug Metab Pharmacokinet 1994;19:257259.

    • Search Google Scholar
    • Export Citation
  • 25.

    Inskeep PB, Darrington RT. Utilization of biopharmaceutical and pharmacokinetic principles in the development of veterinary controlled release drug delivery systems. In: Rathbone MJ, Gumy R, eds. Controlled release veterinary drug delivery. Amsterdam: Elsevier Science BV, 2000;115.

    • Search Google Scholar
    • Export Citation
  • 26.

    Toutain PL, Bousquet-Mélou A. Bioavailability and its assessment. J Vet Pharmacol Ther 2004;27:455466.

  • 27.

    Aronson AL. Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc 1980;176:10611068.

  • 28.

    Riond JL, Riviere JE. Pharmacology and toxicology of doxycycline. J Vet Hum Toxicol 1988;30:431443.

  • 29.

    Brook I, Elliott TB, Pryor HI, et al. In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolones. Int J Antimicrob Agents 2001;18:559562.

    • Search Google Scholar
    • Export Citation
  • 30.

    Hospenthal DR, Murray CK. In vitro susceptibilities of seven Leptospira species to traditional and newer antibiotics. Antimicrob Agents Chemother 2003;47:26462648.

    • Search Google Scholar
    • Export Citation
  • 31.

    Guerin-Faublee V, Flandrois JP, Broye E, et al. Actinomyces pyogenes: susceptibility of 103 clinical animal isolates to 22 antimicrobial agents. Vet Res 1993;24:251259.

    • Search Google Scholar
    • Export Citation
  • 32.

    Yoshimura H, Ishimura M, Endoh YS, et al. Antimicrobial susceptibility of Pasteurella multocida isolated from cattle and pigs. J Vet Med 2001;48:555560.

    • Search Google Scholar
    • Export Citation
  • 33.

    Cunha BA, Domenico P, Cunha CB. Pharmacodynamics of doxycycline. Clin Microbiol Infect 2000;6:270273.

  • 34.

    Notari RE. Principles of pharmacokinetics: dosage regimen. In: Notari RE, ed. Biopharmaceutics and clinical pharmacokinetics: an introduction. 4th ed. New York: Marcel-Dekker, 1987;45212.

    • Search Google Scholar
    • Export Citation
  • 35.

    Baños JE, Ferré AM. Principios de farmacocinética clínica. In: Baños JE, Ferré AM, eds. Principios de farmacología clínica. Bases científicas de la utilización de medicamentos. Amsterdam: Elsevier-Masson, 2002;3156.

    • Search Google Scholar
    • Export Citation
  • 36.

    Ailani RK, Agastya G, Ailani RK, et al. Doxycycline is a cost-effective therapy for hospitalized patients with community-acquired pneumonia. Arch Intern Med 1999;159:266270.

    • Search Google Scholar
    • Export Citation

Advertisement

Pharmacokinetics after administration of an injectable experimental long-acting parenteral formulation of doxycycline hyclate in goats

View More View Less
  • 1 Departamento de Fisiología y Farmacología, Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.
  • | 2 Departamento de Fisiología y Farmacología, Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.
  • | 3 Departamento de Fisiología y Farmacología, Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.
  • | 4 Centro de Enseñanza, Investigación y Extensión en Producción Agro-Silvo Pastoril, Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Km 68 de la carretera Atizapán-Jilotepec, Chapa de Mota, Edo de México, Mexico.
  • | 5 Departamento de Fisiología y Farmacología, Universidad Nacional Autónoma de México, Facultad de Medicina Veterinaria y Zootecnia, Circuito Exterior, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico.

Abstract

Objective—To determine the pharmacokinetics after SC administration of an experimental, long-acting parenteral formulation of doxycycline hyclate in a poloxamer-based matrix and after IV and IM administration of an aqueous formulation of doxycycline hyclate in goats.

Animals—30 clinically normal adult goats.

Procedures—Goats were allocated to 3 groups (10 goats/group). One group of goats received doxycycline hyclate (10 mg/kg) IM, a second group received the same dosage of doxycycline hyclate IV, and the third group received the long-acting parenteral formulation of doxycycline hyclate SC. Serum concentrations of doxycycline were determined before and at various intervals after administration.

Results—The long-acting parenteral formulation of doxycycline hyclate had the greatest bioavailability (545%); mean ± SD maximum serum concentration was 2.4 ± 0.95 μg/mL, peak time to maximum concentration was 19.23 ± 2.03 hours, and elimination half-life was 40.92 ± 4.25 hours.

Conclusions and Clinical Relevance—Results indicated that the long-acting parenteral formulation of doxycycline hyclate distributed quickly and widely throughout the body after a single dose administered SC, and there was a prolonged half-life. Bioavailability of the longacting parenteral formulation of doxycycline hyclate after SC administration was excellent, compared with bioavailability after IV and IM administration of an aqueous formulation of doxycycline hyclate. Although no local tissue irritation and adverse effects were detected, clinical assessment of drug-residues and toxicologic evaluations are warranted before this long-acting parenteral formulation of doxycycline hyclate can be considered for use in goats with bacterial infections.

Abstract

Objective—To determine the pharmacokinetics after SC administration of an experimental, long-acting parenteral formulation of doxycycline hyclate in a poloxamer-based matrix and after IV and IM administration of an aqueous formulation of doxycycline hyclate in goats.

Animals—30 clinically normal adult goats.

Procedures—Goats were allocated to 3 groups (10 goats/group). One group of goats received doxycycline hyclate (10 mg/kg) IM, a second group received the same dosage of doxycycline hyclate IV, and the third group received the long-acting parenteral formulation of doxycycline hyclate SC. Serum concentrations of doxycycline were determined before and at various intervals after administration.

Results—The long-acting parenteral formulation of doxycycline hyclate had the greatest bioavailability (545%); mean ± SD maximum serum concentration was 2.4 ± 0.95 μg/mL, peak time to maximum concentration was 19.23 ± 2.03 hours, and elimination half-life was 40.92 ± 4.25 hours.

Conclusions and Clinical Relevance—Results indicated that the long-acting parenteral formulation of doxycycline hyclate distributed quickly and widely throughout the body after a single dose administered SC, and there was a prolonged half-life. Bioavailability of the longacting parenteral formulation of doxycycline hyclate after SC administration was excellent, compared with bioavailability after IV and IM administration of an aqueous formulation of doxycycline hyclate. Although no local tissue irritation and adverse effects were detected, clinical assessment of drug-residues and toxicologic evaluations are warranted before this long-acting parenteral formulation of doxycycline hyclate can be considered for use in goats with bacterial infections.

Contributor Notes

Address correspondence to Dr. Sumano.