Effects of inhaled fine dust on lung tissue changes and antibody response induced by spores of opportunistic fungi in goats

Charles W. Purdy USDA, Agricultural Research Service, Conservation and Production Research Laboratory, PO Drawer 10, Bushland, TX 79012.

Search for other papers by Charles W. Purdy in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Robert C. Layton Department of Microbiology and Immunology, School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430.

Search for other papers by Robert C. Layton in
Current site
Google Scholar
PubMed
Close
 PhD
,
David C. Straus Department of Microbiology and Immunology, School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430.

Search for other papers by David C. Straus in
Current site
Google Scholar
PubMed
Close
 PhD
, and
J. R. Ayers Veterinary Diagnostic Laboratory, Texas A&M University, Amarillo, TX 79106.

Search for other papers by J. R. Ayers in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Click on author name to view affiliation information

Abstract

Objective—To investigate the effects of sterile fine dust aerosol inhalation on antibody responses and lung tissue changes induced by Mucor ramosissimus or Trichoderma viride spores following intratracheal inoculation in goats.

Animals—36 weanling Boer-Spanish goats.

Procedures—6 goats were allocated to each of 2 M ramosissimus–inoculated groups, 2 T viride–inoculated groups, and 2 control (tent or pen) groups. One of each pair of sporetreated groups and the tent control group were exposed 7 times to sterilized fine feedyard dust (mean ± SD particle diameter, < 7.72 ± 0.69 μm) for 4 hours in a specially constructed tent. Goats in the 4 fungal treatment groups were inoculated intratracheally 5 times with a fungal spore preparation (30 mL), whereas tent control goats were intratracheally inoculated with physiologic saline (0.9% NaCl) solution (30 mL). Pen control goats were not inoculated or exposed to dust. Goats received an IV challenge with equine RBCs to assess antibody responses to foreign antigens. Postmortem examinations were performed at study completion (day 68) to evaluate lung tissue lesions.

Results—5 of 7 deaths occurred between days 18 and 45 and were attributed to fine dust exposures prior to fungal treatments. Fine dust inhalation induced similar lung lesions and precipitating antibodies among spore-treated goats. Following spore inoculations, dust-exposed goats had significantly more spores per gram of consolidated lung tissue than did their nonexposed counterparts.

Conclusions and Clinical Relevance—Fine dust inhalation appeared to decrease the ability of goats to successfully clear fungal spores from the lungs following intratracheal inoculation.

Abstract

Objective—To investigate the effects of sterile fine dust aerosol inhalation on antibody responses and lung tissue changes induced by Mucor ramosissimus or Trichoderma viride spores following intratracheal inoculation in goats.

Animals—36 weanling Boer-Spanish goats.

Procedures—6 goats were allocated to each of 2 M ramosissimus–inoculated groups, 2 T viride–inoculated groups, and 2 control (tent or pen) groups. One of each pair of sporetreated groups and the tent control group were exposed 7 times to sterilized fine feedyard dust (mean ± SD particle diameter, < 7.72 ± 0.69 μm) for 4 hours in a specially constructed tent. Goats in the 4 fungal treatment groups were inoculated intratracheally 5 times with a fungal spore preparation (30 mL), whereas tent control goats were intratracheally inoculated with physiologic saline (0.9% NaCl) solution (30 mL). Pen control goats were not inoculated or exposed to dust. Goats received an IV challenge with equine RBCs to assess antibody responses to foreign antigens. Postmortem examinations were performed at study completion (day 68) to evaluate lung tissue lesions.

Results—5 of 7 deaths occurred between days 18 and 45 and were attributed to fine dust exposures prior to fungal treatments. Fine dust inhalation induced similar lung lesions and precipitating antibodies among spore-treated goats. Following spore inoculations, dust-exposed goats had significantly more spores per gram of consolidated lung tissue than did their nonexposed counterparts.

Conclusions and Clinical Relevance—Fine dust inhalation appeared to decrease the ability of goats to successfully clear fungal spores from the lungs following intratracheal inoculation.

All Time Past Year Past 30 Days
Abstract Views 52 0 0
Full Text Views 172 116 10
PDF Downloads 61 42 4
Advertisement