Intraocular pharmacokinetics of intravenously administered marbofloxacin in rabbits with experimentally induced acute endophthalmitis

Alain Regnier UMR181 Physiopathologie et Toxicologie Expérimentales, INRA, ENVT, Ecole Nationale Vétérinaire, 23 chemin des Capelles, BP 87614, 31076 Toulouse Cedex 3, France.

Search for other papers by Alain Regnier in
Current site
Google Scholar
PubMed
Close
 Dr Med Vet, PhD
,
Marc Schneider Laboratoire Vétoquinol, BP 189, 70204 Lure, France.

Search for other papers by Marc Schneider in
Current site
Google Scholar
PubMed
Close
 PhD
,
Didier Concordet UMR181 Physiopathologie et Toxicologie Expérimentales, INRA, ENVT, Ecole Nationale Vétérinaire, 23 chemin des Capelles, BP 87614, 31076 Toulouse Cedex 3, France.

Search for other papers by Didier Concordet in
Current site
Google Scholar
PubMed
Close
 PhD
, and
Pierre-Louis Toutain UMR181 Physiopathologie et Toxicologie Expérimentales, INRA, ENVT, Ecole Nationale Vétérinaire, 23 chemin des Capelles, BP 87614, 31076 Toulouse Cedex 3, France.

Search for other papers by Pierre-Louis Toutain in
Current site
Google Scholar
PubMed
Close
 Dr Med Vet, PhD

Abstract

Objective—To compare penetration of IV administered marbofloxacin in intraocular fluids of healthy and inflamed eyes in rabbits with endotoxin-induced endophthalmitis.

Animals—35 pigmented rabbits.

Procedures—Endophthalmitis was induced in the right eye via intravitreal administration of Escherichia coli endotoxin. The left eye was a control eye. After 24 hours, a single dose of marbofloxacin (4 mg/kg, IV) was administered. Groups of rabbits (n = 5/group) were euthanized 0.5, 1, 2, 4, 6, 10, and 18 hours later, and blood and ocular fluids were collected. Marbofloxacin concentrations were determined via reverse-phase high-performance liquid chromatography, and pharmacokinetic analysis of the data was performed with a mono-compartmental model.

Results—Mean area under the aqueous concentration-time curve was significantly lower in control eyes (1.64 ± 0.07 μg•h/mL) than in inflamed eyes (3.31 ± 0.11 μg•h/mL). Similarly, drug penetration into aqueous humor was 33% and 65% for control eyes and inflamed eyes, respectively. Mean area under the vitreous humor concentration-time curve for control eyes(1.75 ± 0.05 μg•h/mL) was significantly less than for inflamed eyes (2.39 ± 0.16 μg•h/mL). In the vitreous humor, corresponding penetrations were 34% and 47%, respectively.

Conclusions and Clinical Relevance—Penetration of marbofloxacin into the aqueous and vitreous humor after IV administration was significantly enhanced by intraocular inflammation, suggesting a role for this antimicrobial in the prophylaxis or treatment of bacterial endophthalmitis caused by susceptible pathogens.

Abstract

Objective—To compare penetration of IV administered marbofloxacin in intraocular fluids of healthy and inflamed eyes in rabbits with endotoxin-induced endophthalmitis.

Animals—35 pigmented rabbits.

Procedures—Endophthalmitis was induced in the right eye via intravitreal administration of Escherichia coli endotoxin. The left eye was a control eye. After 24 hours, a single dose of marbofloxacin (4 mg/kg, IV) was administered. Groups of rabbits (n = 5/group) were euthanized 0.5, 1, 2, 4, 6, 10, and 18 hours later, and blood and ocular fluids were collected. Marbofloxacin concentrations were determined via reverse-phase high-performance liquid chromatography, and pharmacokinetic analysis of the data was performed with a mono-compartmental model.

Results—Mean area under the aqueous concentration-time curve was significantly lower in control eyes (1.64 ± 0.07 μg•h/mL) than in inflamed eyes (3.31 ± 0.11 μg•h/mL). Similarly, drug penetration into aqueous humor was 33% and 65% for control eyes and inflamed eyes, respectively. Mean area under the vitreous humor concentration-time curve for control eyes(1.75 ± 0.05 μg•h/mL) was significantly less than for inflamed eyes (2.39 ± 0.16 μg•h/mL). In the vitreous humor, corresponding penetrations were 34% and 47%, respectively.

Conclusions and Clinical Relevance—Penetration of marbofloxacin into the aqueous and vitreous humor after IV administration was significantly enhanced by intraocular inflammation, suggesting a role for this antimicrobial in the prophylaxis or treatment of bacterial endophthalmitis caused by susceptible pathogens.

Contributor Notes

Presented in abstract form at the Annual Meeting of the European College of Veterinary Ophthalmologists, Genoa, Italy, June 2007.

Address correspondence to Dr. Regnier.
  • 1.

    Whitley RD. Canine and feline primary ocular bacterial infections. Vet Clin North Am Small Anim Pract 2000;30:11511167.

  • 2.

    Peiffer RL, Cook CS, Möller I. Therapeutic strategies involving antimicrobial treatment of ophthalmic disease in small animals. J Am Vet Med Assoc 1984;185:11721175.

    • Search Google Scholar
    • Export Citation
  • 3.

    Dowling PM, Grahn BH. Antimicrobial therapy of ocular infections. Can Vet J 1998;39:121124.

  • 4.

    Sunaric-Mégevand G, Pournaras CJ. Current approaches to postoperative endophthalmitis. Brit J Ophthalmol 1997;81:10061015.

  • 5.

    Kresloff MS, Castellarin AA, Zarbin MA. Endophthalmitis. Surv Ophthalmol 1998;43:193224.

  • 6.

    Smith PJ. Surgery of the canine posterior segment. In: Gelatt KN, ed. Veterinary ophthalmology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 1999;935980.

    • Search Google Scholar
    • Export Citation
  • 7.

    Davis JL. Intravenous antibiotics for endophthalmitis. Am J Ophthalmol 1996;122:724726.

  • 8.

    Rowley RA, Rubin LF. Penetration of penicillin into the aqueous humor in the dog. Am J Vet Res 1969;30:19451950.

  • 9.

    Sigel CW, Macklin AW, Grace ME, et al. Trimethoprim and sulfadiazine concentrations in aqueous and vitreous humors of the dog. Vet Med Small Anim Clin 1981;76:991993.

    • Search Google Scholar
    • Export Citation
  • 10.

    Regnier A, Concordet D, Schneider M, et al. Population pharmacokinetics of marbofloxacin in aqueous humor after intravenous administration in dogs. Am J Vet Res 2003;64:889893.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Barza M. Factors affecting the intraocular penetration of antibiotics. The influence of route, inflammation, animal species and tissue pigmentation. Scand J Infect Dis Suppl 1978;14:151159.

    • Search Google Scholar
    • Export Citation
  • 12.

    Meredith TA. Antimicrobials and antifungals. In: Zimmerman TJ, Kooner KS, Sharir M, eds. Textbook of ocular pharmacology. Philadelphia: Lippincott Raven, 1997;363385.

    • Search Google Scholar
    • Export Citation
  • 13.

    Giamarellou H, Kanellas D, Kavouklis E, et al. Comparative pharmacokinetics of ciprofloxacin, ofloxacin and pefloxacin in human aqueous humour. Eur J Clin Microbiol Infect Dis 1993;12:293297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Madu AA, Mayers M, Perkins R, et al. Aqueous and vitreous penetration of ciprofloxacin following different modes of systemic administration. Exp Eye Res 1996;63:129136.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Behrens-Baumann W, Martell J. Ciprofloxacin concentrations in human aqueous humor following intravenous administration. Chemotherapy 1987;33:328330.

  • 16.

    Donnenfeld ED, Perry HD, Snyder RW, et al. Intracorneal, aqueous humor, and vitreous humor penetration of topical and oral ofloxacin. Arch Ophthalmol 1997;115:173176.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Salvanet A, Fisch A, Lafaix C, et al. Pefloxacin concentrations in human aqueous humour and lens. J Antimicrob Chemother 1986;18:199201.

  • 18.

    Bron AM, Pechinot AP, Garcher CP, et al. The ocular penetration of oral sparfloxacin in humans. Am J Ophthalmol 1994;117:322327.

  • 19.

    Kobayakawa S, Tochikubo T, Tsuji A. Penetration of levofloxacin into human aqueous humor. Ophthalmic Res 2003;35:97101.

  • 20.

    Hariprasad SM, Mieler WF, Holz ER. Vitreous and aqueous penetration of orally administered gatifloxacin in humans. Arch Ophthalmol 2003;121:345350.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hariprasad SM, Shah GK, Mieler WF, et al. Vitreous and aqueous penetration of orally administered moxifloxacin in humans. Arch Ophthalmol 2006;124:178182.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Spreng M, Deleforge J, Thomas V, et al. Antibacterial activity of marbofloxacin. A new fluoroquinolone for veterinary use against canine and feline isolates. J Vet Pharmacol Ther 1995;18:284289.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Cester CC, Schneider M, Toutain PL. Comparative kinetics of two orally administered quinolones in the dog: enrofloxacin versus marbofloxacin. Rev Med Vet (Toulouse) 1996;143:703716.

    • Search Google Scholar
    • Export Citation
  • 24.

    Schneider M, Thomas V, Boisramé B, et al. Pharmacokinetics of marbofloxacin in dogs after oral and parenteral administration. J Vet Pharmacol Ther 1996;19:5661.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Heinen E. Comparative serum pharmacokinetics of the fluoroquinolones enrofloxacin, difloxacin, marbofloxacin and orbifloxacin in dogs after single oral administration. J Vet Pharmacol Ther 2002;25:15.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Csukas S, Paterson CA, Brown K, et al. Time course of rabbit ocular inflammatory response and mediator release after intravitreal endotoxin. Invest Ophthalmol Vis Sci 1990;31:382387.

    • Search Google Scholar
    • Export Citation
  • 27.

    Allen JB, McGahan MC, Ferrell JB, et al. Nitric oxide synthase inhibitors exert differential time-dependent effects on LPS-induced uveitis. Exp Eye Res 1996;62:2128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Bailer AJ. Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 1988;16:303309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Walstad RA, Blika S, Thurmann-Nielsen E, et al. The penetration of ceftazidime into the inflamed rabbit eye. Scand J Infect Dis 1987;19:131135.

  • 30.

    Drusano GL, Liu W, Perkins R, et al. Determination of robust ocular pharmacokinetic parameters in serum and vitreous humor of albino rabbits following systemic administration of ciprofloxacin from sparse data sets by using IT2S, a population pharmacokinetic modeling program. Antimicrob Agents Chemother 1995;39:16831687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Alfaro DV, Hudson SJ, Rafanan MM, et al. The effect of trauma on the ocular penetration of intravenous ciprofloxacin. Am J Ophthalmol 1996;122:678683.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    El-Massry A, Meredith TA, Aguilar HE, et al. Aminoglycoside levels in the rabbit vitreous cavity after intravenous administration. Am J Ophthalmol 1996;122:684689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Meredith TA, Aguilar HE, Shaarawy A, et al. Vancomycin levels in the vitreous cavity after intravenous administration. Am J Ophthalmol 1995;119:774778.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Öztürk F, Kurt E, Inan ÜÜ, et al. A. Penetration of topical and oral ofloxacin into the aqueous and vitreous humor of inflamed rabbit eyes. Int J Pharm 2000;204:9195.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Waga J, Nilsson-Ehle I, Ljungberg B, et al. Microdialysis for pharmacokinetic studies of ceftazidime in rabbit vitreous. J Ocul Pharmacol Ther 1999;15:455463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kulkarni PS, Mancino M. Studies on intraocular inflammation produced by intravitreal human interleukins in rabbits. Exp Eye Res 1993;56:275279.

  • 37.

    Barza M. Animal models in the evaluation of chemotherapy of ocular infections. In: Zak O, Sande MA, eds. Experimental models in antimicrobial chemotherapy. Vol 1. London: Academic Press, 1986;185211.

    • Search Google Scholar
    • Export Citation
  • 38.

    Fukuda M, Sasaki K. Different iris coloration and uptake of a fluoroquinolone agent into the iris ciliary body of rabbit eyes. Ophthalmic Res 1994;26:137140.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Perez S, Solans C, Bregante MA, et al. Pharmacokinetics and ocular penetration of grepafloxacin in albino and pigmented rabbits. J Antimicrob Chemother 2002;50:541545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Gruet P, Richard P, Thomas E, et al. Prevention of surgical infections in dogs with a single intravenous injection of marbofloxacin: an experimental model. Vet Rec 1997;140:199202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Cochereau-Massin I, Bauchet J, Marrakchi-Benjaafar M, et al. Efficacy and ocular penetration of sparfloxacin in experimental streptococcal endophthalmitis. Antimicrob Agents Chemother 1993;37:633636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Liu W, Liu QF, Perkins R, et al. Pharmacokinetics of sparfloxacin in the serum and vitreous humor of rabbits: physicochemical properties that regulate penetration of quinolone antimicrobials. Antimicrob Agents Chemother 1998;42:14171423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Iyer MN, He F, Wensel TG, et al. Clearance of intravitreal moxifloxacin. Invest Ophthalmol Vis Sci 2006;47:317319.

  • 44.

    Gatti G, Panozzo G. Effect of inflammation on intraocular penetration of intravenous ofloxacin in albino rabbits. Antimicrob Agents Chemother 1995;39:549552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Sanchez-Navarro A, Sanchez Recio MM. Basis of anti-infective therapy: pharmacokinetic-pharmacodynamic criteria and methodology for dual dosage individualisation. Clin Pharmacokinet 1999;37:289304.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Schentag JJ. Pharmacokinetic and pharmacodynamic surrogate markers: studies with fluoroquinolones in patients. Am J HealthSyst Pharm 1999;56(suppl 3):S21–S24.

    • Search Google Scholar
    • Export Citation
  • 47.

    Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995;28:143160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Turnidge J. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 1999;58(suppl 2):2936.

  • 49.

    Meunier D, Acar J-F, Martel J-L, et al. A seven-year survey of susceptibility to marbofloxacin of pathogenic strains isolated from pets. Int J Antimicrob Agents 2004;24:592598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Yu-Speight AW, Kern TJ, Erb HN. Ciprofloxacin and ofloxacin aqueous humor concentrations after topical administration in dogs undergoing cataract surgery. Vet Ophthalmol 2005;8:181187.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement