• 1.

    Johnson JM, Johnson AL, Pijanowski GJ, et al. Rehabilitation of dogs with surgically treated cranial cruciate ligament-deficient stifles by use of electrical stimulation of muscles. Am J Vet Res 1997;58:14731478.

    • Search Google Scholar
    • Export Citation
  • 2.

    Doyle ND. Rehabilitation of fractures in small animals: maximize outcomes, minimize complications. Clin Tech Small Anim Pract 2004;19:180191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Alon G. Use of neuromuscular electrical stimulation in neurorehabilitation: a challenge to all. J Rehabil Res Dev 2003;40:ixxii.

  • 4.

    Weiss G. Sur la possibilité de rendre comparable entre eux les appareils servant à l'excitation électrique. Arch Ital Biol 1901;35:413446.

    • Search Google Scholar
    • Export Citation
  • 5.

    Irnich W. Georges Weiss' fundamental law of electrostimulation is 100 years old. Pacing Clin Electrophysiol 2002;25:245248.

  • 6.

    Howson DC. Peripheral neural excitability. Implications for transcutaneous electrical nerve stimulation. Phys Ther 1978;58:14671473.

  • 7.

    Lapicque L. La relation intensité-durée pour les tissus divers. In: La chronaxie et ses applications physiologiques. Paris: Hermann & Cie, 1938;67113.

    • Search Google Scholar
    • Export Citation
  • 8.

    Irnich W. The chronaxie time and its practical importance. Pacing Clin Electrophysiol 1980;3:292301.

  • 9.

    Dumoulin J, De Bisschop G. Bases physiologiques de l'excitabilité neuromusculaire. In: Electrothérapie. 5th ed. Paris: Maloine Edition, 1987;169192.

    • Search Google Scholar
    • Export Citation
  • 10.

    Dumoulin J, De Bisshop G. In: de Visscher A, ed. Savoir interpréter l'électrodiagnostic neuro-musculaire et l'électromyogramme. Paris: Librairie Maloine, 1964;2734.

    • Search Google Scholar
    • Export Citation
  • 11.

    Melchiorri G, Salsano ML, Boscarino S, et al. Traditional electrodiagnostic testing in lumbar disc herniation. Funct Neurol 2006;21:8386.

    • Search Google Scholar
    • Export Citation
  • 12.

    Thomson FK, Bowen JM. Electrodiagnostic testing: mapping and clinical use of motor points in the dog. J Am Vet Med Assoc 1971;159:17631770.

    • Search Google Scholar
    • Export Citation
  • 13.

    Geddes LA. Accuracy limitations of chronaxie values. IEEE Trans Biomed Eng 2004;51:176181.

  • 14.

    EN-Xplore. Guide de protocoles pour la physiothérapie. Sevran, France: ENRAF-NONIUS BV, 2003.

  • 15.

    Programmes standards. Geneva: Publication MediCompex SA, 1999;2.12.4.

  • 16.

    NMES, stimulation électrique neuromusculaire. Cefar Physio 4: Mode d'emploi Guide Clinique. Malmö, Sweden: CEFAR Medical AB, 2003;3385.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hitomi Y, Kizaki T, Watanabe S, et al. Seven skeletal muscles rich in slow muscle fibers may function to sustain neutral position in the rodent hindlimb. Comp Biochem Physiol B Biochem Mol Biol 2005;140:4550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Maxwell LC, Barclay JK, Mohrman DE, et al. Physiological characteristics of skeletal muscles of dogs and cats. Am J Physiol 1977;233:C14C18.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Gollnick PD, Armstrong RB, Saubert CW IV, et al. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 1972;33:312319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Johnson MA, Polgar J, Weightman D, et al. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci 1973;18:111129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Johnson MA, Sideri G, Weightman D, et al. A comparison of fibre size, fibre type constitution and spatial fibre type distribution in normal human muscle and in muscle from cases of spinal muscular atrophy and from other neuromuscular disorders. J Neurol Sci 1973;20:345361.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Williams TM, Dobson GP, Mathieu-Costello O, et al. Skeletal muscle histology and biochemistry of an elite sprinter, the African cheetah. J Comp Physiol [B] 1997;167:527535.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Dobson GP, Parkhouse WS, Weber JM, et al. Metabolic changes in skeletal muscle and blood of greyhounds during 800-m track sprint. Am J Physiol 1988;255:R513R519.

    • Search Google Scholar
    • Export Citation
  • 24.

    Wakeling JM, Syme DA. Wave properties of action potentials from fast and slow motor units of rats. Muscle Nerve 2002;26:659668.

  • 25.

    Henneman E, Somjen G, Carpenter DO. Functional significance of cell size in spinal motoneurons. J Neurophysiol 1965;28:560580.

  • 26.

    Smith CD, Geddes LA, Bourland JD, et al. The chronaxie and propagation velocity of canine cervical vagus nerve fibers in vivo. Cardiovasc Eng Int J 2001;1:7784.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Burke D, Mogyoros I, Vagg R, et al. Temperature dependence of excitability indices of human cutaneous afferents. Muscle Nerve 1999;22:5160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Kuzon WM Jr, Rosenblatt JD, Pynn BR, et al. A comparative histochemical and morphometric study of canine skeletal muscle. Can J Vet Res 1989;53:125132.

    • Search Google Scholar
    • Export Citation
  • 29.

    Rosenblatt JD, Kuzon WM Jr, Pynn BR, et al. Fiber type, fiber size, and capillary geometric features of the semitendinosus muscle in three types of dogs. Am J Vet Res 1988;49:15731576.

    • Search Google Scholar
    • Export Citation
  • 30.

    Kiernan MC, Lin CS, Andersen KV, et al. Clinical evaluation of excitability measures in sensory nerve. Muscle Nerve 2001;24:883892.

  • 31.

    Nikolic M, Malnar-Dragojevic D, Bobinac D, et al. Age-related skeletal muscle atrophy in humans: an immunohistochemical and morphometric study. Coll Antropol 2001;25:545553.

    • Search Google Scholar
    • Export Citation
  • 32.

    Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 1995;50 Spec No:1116.

  • 33.

    Braund KG, McGuire JA, Lincoln CE. Observations on normal skeletal muscle of mature dogs: a cytochemical, histochemical, and morphometric study. Vet Pathol 1982;19:577595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Staron RS, Hagerman FC, Hikida RS, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem 2000;48:623629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Gunn HM. Differences in the histochemical properties of skeletal muscles of different breeds of horses and dogs. J Anat 1978;127:615634.

    • Search Google Scholar
    • Export Citation
  • 36.

    Luginbuhl AJ, Dudley GA, Staron RS. Fiber type changes in rat skeletal muscle after intense interval training. Histochemistry 1984;81:5558.

  • 37.

    Rivero JL, Ruz A, Marti-Korff S, et al. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses. J Appl Physiol 2007;102:18711882.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Parsons D, Musch TI, Moore RL, et al. Dynamic exercise training in foxhounds. II. Analysis of skeletal muscle. J Appl Physiol 1985;59:190197.

  • 39.

    Sabbah HN, Hansen-Smith F, Sharov VG, et al. Decreased proportion of type I myofibers in skeletal muscle of dogs with chronic heart failure. Circulation 1993;87:17291737.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Barsanti JA, Walser M, Hatheway CL, et al. Type C botulism in American Foxhounds. J Am Vet Med Assoc 1978;172:809813.

  • 41.

    Nazarov VA, Semenov VA. Changes in motor chronaxy of the skeletal muscles in dogs in soft tissue crush syndrome complicated by radiation disease [in Russian]. Ortop Travmatol Protez 1973;34:6167.

    • Search Google Scholar
    • Export Citation
  • 42.

    Ashley Z, Sutherland H, Lanmuller H, et al. Determination of the chronaxie and rheobase of denervated limb muscles in conscious rabbits. Artif Organs 2005;29:212215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Lanmüller H, Ashley Z, Unger E, et al. Implantable device for long-term electrical stimulation of denervated muscles in rabbits. Med Biol Eng Comput 2005;43:535540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Le Flohic J-C. Electro-stimulation: le muscle dénervé. Ann Kinésithér 2001;28:233240.

  • 45.

    Paternostro-Sluga T, Schuhfried O, Vacariu G, et al. Chronaxie and accommodation index in the diagnosis of muscle denervation. Am J Phys Med Rehabil 2002;81:253260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    De Lahunta A. Lower motor neuron. General somatic efferent system. In: Veterinary neuroanatomy and clinical neurology. 2nd ed. Philadelphia: Saunders, 1993;5394.

    • Search Google Scholar
    • Export Citation

Advertisement

Assessment of impulse duration thresholds for electrical stimulation of muscles (chronaxy) in dogs

View More View Less
  • 1 Unité Physiothérapie-Rééducation-Ostéopathie–USP 2007-03-135 RTI2B, Ecole Nationale Vétérinarire de Lyon, Université de Lyon, 69365 Lyon Cedex, Marcy l'Étoile, France.
  • | 2 Unité Physiothérapie-Rééducation-Ostéopathie–USP 2007-03-135 RTI2B, Ecole Nationale Vétérinarire de Lyon, Université de Lyon, 69365 Lyon Cedex, Marcy l'Étoile, France.
  • | 3 Service de Chirurgie-Anesthésiologie, Ecole Nationale Vétérinarire de Lyon, Université de Lyon, 69365 Lyon Cedex, Marcy l'Étoile, France.
  • | 4 Unité de Physiologie, Pharmacodynamie et Thérapeutique, Ecole Nationale Vétérinarire de Lyon, Université de Lyon, 69365 Lyon Cedex, Marcy l'Étoile, France.
  • | 5 Department of Physical Therapy, College of Health, Education & Professional Studies, University of Tennessee, Chattanooga, TN 37403.
  • | 6 Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Abstract

Objective—To determine the electrical impulse duration thresholds (chronaxy) for maximal motor contraction of various muscles without stimulation of pain fibers in dogs.

Animals—10 healthy adult Beagles.

Procedures—The dogs were used to assess the minimal intensity (rheobase) required to elicit motor contraction of 11 muscles (5 in the forelimb [supraspinatus, infraspinatus, deltoideus, lateral head of the triceps brachii, and extensor carpi radialis], 5 in the hind limb [gluteus medius, biceps femoris, semitendinosus, vastus lateralis, and tibialis cranialis], and the erector spinae). The rheobase was used to determine the chronaxy for each of the 11 muscles in the 10 dogs; chronaxy values were compared with those reported for the corresponding muscles in humans.

Results—Compared with values in humans, chronaxy values for stimulation of AA motor fibers in the biceps femoris and semitendinosus muscles and muscles of the more distal portions of limbs were lower in dogs. For the other muscles evaluated, chronaxy values did not differ between dogs and humans.

Conclusions and Clinical Relevance—Application of the dog-specific chronaxy values when performing electrical stimulation for strengthening muscles or providing pain relief is likely to minimize the pain perceived during treatment in dogs.

Abstract

Objective—To determine the electrical impulse duration thresholds (chronaxy) for maximal motor contraction of various muscles without stimulation of pain fibers in dogs.

Animals—10 healthy adult Beagles.

Procedures—The dogs were used to assess the minimal intensity (rheobase) required to elicit motor contraction of 11 muscles (5 in the forelimb [supraspinatus, infraspinatus, deltoideus, lateral head of the triceps brachii, and extensor carpi radialis], 5 in the hind limb [gluteus medius, biceps femoris, semitendinosus, vastus lateralis, and tibialis cranialis], and the erector spinae). The rheobase was used to determine the chronaxy for each of the 11 muscles in the 10 dogs; chronaxy values were compared with those reported for the corresponding muscles in humans.

Results—Compared with values in humans, chronaxy values for stimulation of AA motor fibers in the biceps femoris and semitendinosus muscles and muscles of the more distal portions of limbs were lower in dogs. For the other muscles evaluated, chronaxy values did not differ between dogs and humans.

Conclusions and Clinical Relevance—Application of the dog-specific chronaxy values when performing electrical stimulation for strengthening muscles or providing pain relief is likely to minimize the pain perceived during treatment in dogs.

Contributor Notes

Dr. Combet's present address is 8, Pl de la Mairie, 63310 Randan, France.

Dr. Chanoit's present address is Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606.

Presented in part at the 14th scientific meeting of the European College of Veterinary Surgeons, Lyon, France, July 2005.

Address correspondence to Dr. Marcellin-Little.