• 1.

    LeBlanc SJ, Leslie KE, Duffield TF. Metabolic predictors of displaced abomasum in dairy cattle. J Dairy Sci 2005;88:159170.

  • 2.

    Zwald NR, Weigel KA, Chang YM, et al. Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. J Dairy Sci 2004;87:42874294.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Dawson LJ, Aalseth EP, Rice LE, et al. Influence of fiber form in a complete mixed ration on incidence of left displaced abomasum in postpartum dairy cows. J Am Vet Med Assoc 1992;200:19891992.

    • Search Google Scholar
    • Export Citation
  • 4.

    Pehrson B, Stengärde L. Ursachen der unterschiedlichen Inzidenz von Dislocatio abomasi in den USA sowie in Schweden, in Proceedings. Internat Workshop über Ätiologie, Pathogenese, Diagnostik, Prognose, Therapie und Prophylaxe der Dislocatio abomasi 1998;2000:4147.

    • Search Google Scholar
    • Export Citation
  • 5.

    Constable PD, Miller GY, Hoffsis GF, et al. Risk factors for abomasal volvulus and left abomasal displacement in cattle. Am J Vet Res 1992;53:11841192.

    • Search Google Scholar
    • Export Citation
  • 6.

    Lyons DT, Freeman AE, Kuck AL. Genetics of health traits in Holstein cattle. J Dairy Sci 1991;74:10921100.

  • 7.

    Ricken M, Hamann H, Scholz H, et al. Genetic analysis of the prevalence of abomasal displacement and its relationship to milk output characteristics in German Holstein cows [in German. Dtsch Tierärztl Wochenschr 2004;111:366370.

    • Search Google Scholar
    • Export Citation
  • 8.

    Stoffel MH, Monnard CW, Steiner A, et al. Distribution of muscarinic receptor subtypes and interstitial cells of Cajal in the gastrointestinal tract of healthy dairy cows. Am J Vet Res 2006;67:19921997.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Vento P, Kiviluoto T, Keränen U, et al. Quantitative comparison of growth-associated protein-43 and substance P in ulcerative colitis. J Histochem Cytochem 2001;49:749757.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Wolf V, Hamann H, Scholz H, et al. Einflüsse auf das Auftreten von Labmagenverlagerungen bei Deutschen Holstein Kühen. Dtsch Tierärztl Wochenschr 2001;108:403408.

    • Search Google Scholar
    • Export Citation
  • 11.

    Dockray GJ. Physiology of enteric neuropeptides. In: Physiology of the gastrointestinal tract. 2nd ed. New York: Raven Press, 1987;4160.

    • Search Google Scholar
    • Export Citation
  • 12.

    Jubb TF, Malmo J, Davis GM, et al. Left-side displacement of the abomasum in dairy cows at pasture. Aust Vet J 1991;68:140142.

  • 13.

    Doll K. Aktuelles zu den Ursachen der Labmagenverlagerung. Züchtungskunde 2007;79:5969.

  • 14.

    Eicher R, Audige L, Braun U, et al. Epidemiologie und Risikofaktoren der Blinddarmdilatation und Labmagenverlagerung bei der Milchkuh. Schweiz Arch Tierheilkd 1999;141:423429.

    • Search Google Scholar
    • Export Citation
  • 15.

    Uribe HA, Kennedy BW, Martin SW, et al. Genetic parameters for common health disorders of Holstein cows. J Dairy Sci 1995;78:421430.

  • 16.

    Dirksen G. Vorkommen, Ursachen und Entwicklung der linksseitigen Labmagenverlagerung (Dislocatio abomasi sinistra) des Rindes. Dtsch Tierärztl Wochenschr 1961;68:812.

    • Search Google Scholar
    • Export Citation
  • 17.

    Zulauf M, Spring C, Eicher R, et al. Spontaneous in vitro contractile activity of specimens from the abomasal wall of healthy cows and comparison among dairy breeds. Am J Vet Res 2002;63:16871694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Groenewald HB. Neuropeptides in the myenteric ganglia and nerve fibres of the forestomach and abomasum of grey, white and black Karakul lambs. Onderstepoort J Vet Res 1994;61:207213.

    • Search Google Scholar
    • Export Citation
  • 19.

    Guilloteau P, Huërou-Luron IL, Chayvialle JA, et al. Gut regulatory peptides in young cattle and sheep. Zentralbl Veterinarmed [A] 1997;44:123.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Pfannkuche H, Reiche D, Hoppe S, et al. Cholinergic and noncholinergic innervation of the smooth muscle layers in the bovine abomasum. Anat Rec 2002;267:7077.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Pfannkuche H, Schellhorn C, Schemann M, et al. Age-associated plasticity in the intrinsic innervation of the ovine rumen. J Anat 2003;203:277282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Pfannkuche H, Schemann M, Gäbel G. Ruminal muscle of sheep is innervated by non-polarized pathways of cholinergic and nitrergic myenteric neurones. Cell Tissue Res 2002;309:347354.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pravettoni D, Doll K, Hummel M, et al. Insulin resistance and abomasal motility disorders in cows detected by use of abomasoduodenal electromyography after surgical correction of left displaced abomasum. Am J Vet Res 2004;65:13191324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Soehartono RH, Kitamura N, Yamagishi N, et al. An immunohistochemical study of endocrine cells in the abomasum of vagotomized calf. J Vet Med Sci 2002;64:1115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Yamamoto Y, Kitamura N, Yamada J, et al. Immunohistochemical study of the distributions of the peptide- and catecholamine-containing nerves in the omasum of the sheep. Acta Anat (Basel) 1994;149:104110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Costa M, Furness JB, Llewellyn-Smith IJ. Histochemistry of the enteric nervous system. In: Physiology of the gastrointestinal tract. 2nd ed. New York: Raven Press, 1987;106122.

    • Search Google Scholar
    • Export Citation
  • 27.

    Fahrenkrug J. Transmitter role of vasoactive intestinal peptide. Pharmacol Toxicol 1993;72:354363.

  • 28.

    Geishauser T, Reiche D, Schemann M. In vitro motility disorders associated with displaced abomasum in dairy cows. Neurogastroenterol Motil 1998;10:395401.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Balemba OB, Grøndahl ML, Mbassa GK, et al. The organisation of the enteric nervous system in the submucous and mucous layers of the small intestine of the pig studied by VIP and neurofilament protein immunohistochemistry. J Anat 1998;192:257267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    van Ginneken C, Weyns A, van Meir F, et al. Intrinsic innervation of the stomach of the fetal pig: an immunohistochemical study of VIP-immunoreactive nerve fibres and cell bodies. Anat Histol Embryol 1996;25:269275.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Cuello AC, Galfre G, Milstein C. Detection of substance P in the central nervous system by a monoclonal antibody. Proc Natl Acad Sci U S A 1979;76:35323536.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Dixon WJ. BMDP statistical software manual. Vol 1 and 2. Los Angeles: University of California Press, 1993.

  • 33.

    Stengärde LU, Pehrson BG. Effects of management, feeding, and treatment on clinical and biochemical variables in cattle with displaced abomasum. Am J Vet Res 2002;63:137142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Van Winden SC, Kuiper R. Left displacement of the abomasum in dairy cattle: recent developments in epidemiological and etiological aspects. Vet Res 2003;34:4756.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Wolf V, Hamann H, Scholz H, et al. Systematische Einflüsse auf das Auftreten von Labmagenverlagerungen bei Deutschen Holstein Kühen. Züchtungskunde 2001;73:257265.

    • Search Google Scholar
    • Export Citation
  • 36.

    Geishauser T. Abomasal displacement in the bovine—a review on character, occurrence, aetiology and pathogenesis. Zentralbl Veterinarmed [A] 1995;42:229251.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Meylan M, Georgieva TM, Reist M, et al. Distribution of mRNA that codes for subtypes of adrenergic receptors in the gastrointestinal tract of dairy cows. Am J Vet Res 2004;65:11421150.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Meylan M, Georgieva TM, Reist M, et al. Distribution of mRNA that codes for 5-hydroxytryptamine receptor subtypes in the gastrointestinal tract of dairy cows. Am J Vet Res 2004;65:11511158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Spring C, Mevissen M, Reist M, et al. Modification of spontaneous contractility of smooth muscle preparations from the bovine abomasal antrum by serotonin receptor agonists. J Vet Pharmacol Ther 2003;63:16871694.

    • Search Google Scholar
    • Export Citation
  • 40.

    Balemba OB, Hay-Smith A, Assey RJ, et al. An immunohistochemical study of the organization of ganglia and nerve fibres in the mucosa of the porcine intestine. Anat Histol Embryol 2002;31:237246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Bishop AE, Polak JM, Facer P, et al. Neuron specific enolase: a common marker for the endocrine cells and innervation of the gut and pancreas. Gastroenterology 1982;83:902915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Keast JR, Furness JB, Costa M. Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol 1985;236:403422.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Pearson GT. Structural organization and neuropeptide distributions in the equine enteric nervous system: an immunohistochemical study using whole-mount preparations from the small intestine. Cell Tissue Res 1994;276:523534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Schemann M, Reiche D, Michel K. Enteric pathways in the stomach. Anat Rec 2001;262:4757.

  • 45.

    Schutzberg M, Hokfelt T, Lundberg JM, et al. Distribution of VIP neurons in the peripheral and central nervous system. Endocrinol Jpn 1980;27 (suppl 1):2330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Lee CM, Kumar RK, Lubowski DZ, et al. Neuropeptides and nerve growth in inflammatory bowel diseases: a quantitative immunohistochemical study. Dig Dis Sci 2002;47:495502.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Schneider J, Jehle EC, Starlinger MJ, et al. Neurotransmitter coding of enteric neurones in the submucous plexus is changed in non-inflamed rectum of patients with Crohn's disease. Neurogastroenterol Motil 2001;13:255264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Vittoria A, Costagliola A, Carrese E, et al. Nitric oxide-containing neurons in the bovine gut, with special reference to their relationship with VIP and Galanin. Arch Histol Cytol 2000;63:357368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Grider JR, Murthy KS, Jin JG, et al. Stimulation of nitric oxide from muscle cells by VIP: prejunctional enhancement of VIP release. Am J Physiol 1992;262:G774G778.

    • Search Google Scholar
    • Export Citation
  • 50.

    Porter AJ, Wattchow DA, Hunter A, et al. Abnormalities of nerve fibres in the circular muscle of patients with slow transit constipation. Int J Colorectal Dis 1998;13:208216.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Ganns D, Schrödl F, Neuhuber W, et al. Investigation of general and cytoskeletal markers to estimate numbers and proportions of neurons in the human intestine. Histol Histopathol 2006;21:4151.

    • Search Google Scholar
    • Export Citation
  • 52.

    Wrobel KH, Schenk E. Immunohistochemical investigations of the autonomous innervation of the cervine testis. Ann Anat 2003;185:493506.

Advertisement

Evaluation of differences between breeds for substance P, vasoactive intestinal polypeptide, and neurofilament 200 in the abomasal wall of cattle

Marlene Sickinger Dr Med Vet1, Rudolf Leiser Dr Med Vet Habil, Dr hc2, Klaus Failing Dr Rer Nat3, and Klaus Doll Dr Med Vet Habil4
View More View Less
  • 1 Clinic for Ruminants and Swine, University of Giessen, 35392 Giessen, Germany.
  • | 2 Institute for Veterinary Anatomy, Embryology and Histology, University of Giessen, 35392 Giessen, Germany.
  • | 3 Unit for Biomathematics and Data Processing, University of Giessen, 35392 Giessen, Germany.
  • | 4 Clinic for Ruminants and Swine, University of Giessen, 35392 Giessen, Germany.

Abstract

Objective—To compare the content of substance P, vasoactive intestinal polypeptide, and neurofilament 200 in biopsy specimens taken from the abomasal wall of healthy cows of 2 breeds.

Sample Population—Biopsy specimens taken from different sites of the abomasal wall from 20 German Holstein cows and 20 German Fleckvieh cows.

Procedures—Biopsy specimens were examined immunohistochemically, and the content of substance P, vasoactive intestinal polypeptide, and neurofilament 200 was determined by measuring the immunoreactive areas.

Results—Significant differences between the breeds were detected. Substance P-immuno-reactive area in the corpus abomasi was significantly smaller in the German Holsteins (geometric mean ± geometric SD, 679 ± 1.83 μm2) than in the German Fleckvieh cows (1,020 ± 1.65 μm2). Concerning vasoactive intestinal polypeptide, differences between breeds were not significant. Overall nerve density in the antral abomasal wall was significantly greater in German Holsteins than in German Fleckvieh cows (immunoreactive areas for neurofilament 200 in German Holsteins was 4,842 ± 1.29 μm2 and in German Fleckvieh cows was 3,333 ± 1.63 μm2).

Conclusions and Clinical Relevance—The significantly lower content of substance P in the corpus abomasi could explain why German Holstein cows are predisposed to abomasal displacement, compared with German Fleckvieh cows, in which this disease is a rare finding.

Abstract

Objective—To compare the content of substance P, vasoactive intestinal polypeptide, and neurofilament 200 in biopsy specimens taken from the abomasal wall of healthy cows of 2 breeds.

Sample Population—Biopsy specimens taken from different sites of the abomasal wall from 20 German Holstein cows and 20 German Fleckvieh cows.

Procedures—Biopsy specimens were examined immunohistochemically, and the content of substance P, vasoactive intestinal polypeptide, and neurofilament 200 was determined by measuring the immunoreactive areas.

Results—Significant differences between the breeds were detected. Substance P-immuno-reactive area in the corpus abomasi was significantly smaller in the German Holsteins (geometric mean ± geometric SD, 679 ± 1.83 μm2) than in the German Fleckvieh cows (1,020 ± 1.65 μm2). Concerning vasoactive intestinal polypeptide, differences between breeds were not significant. Overall nerve density in the antral abomasal wall was significantly greater in German Holsteins than in German Fleckvieh cows (immunoreactive areas for neurofilament 200 in German Holsteins was 4,842 ± 1.29 μm2 and in German Fleckvieh cows was 3,333 ± 1.63 μm2).

Conclusions and Clinical Relevance—The significantly lower content of substance P in the corpus abomasi could explain why German Holstein cows are predisposed to abomasal displacement, compared with German Fleckvieh cows, in which this disease is a rare finding.

Contributor Notes

Supported by contributions from the Engemann Foundation, Germany.

Presented in part at the German Buiatrics Association Congress, Fulda, Germany, 2007.

Address correspondence to Dr. Sickinger.