Effects of dexamethasone administration on insulin resistance and components of insulin signaling and glucose metabolism in equine skeletal muscle

Heather A. Tiley Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Heather A. Tiley in
Current site
Google Scholar
PubMed
Close
 MSc
,
Raymond J. Geor Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by Raymond J. Geor in
Current site
Google Scholar
PubMed
Close
 BVSc, PhD
, and
L. Jill McCutcheon Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

Search for other papers by L. Jill McCutcheon in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine the effects of dexamethasone treatment on selected components of insulin signaling and glucose metabolism in skeletal muscle obtained from horses before and after administration of a euglycemic-hyperinsulinemic clamp (EHC).

Animals—6 adult Standardbreds.

Procedures—In a balanced crossover study, horses received either dexamethasone (0.08 mg/kg, IV, q 48 h) or an equivalent volume of saline (0.9% NaCl) solution, IV, for 21 days. A 2-hour EHC was administered for measurement of insulin sensitivity 1 day after treatment. Muscle biopsy specimens obtained before and after the EHC were analyzed for glucose transporter 4, protein kinase B (PKB), glycogen synthase kinase (GSK)-3α/β protein abundance and phosphorylation state (PKB Ser473 and GSK-3α/β Ser21/9), glycogen synthase and hexokinase enzyme activities, and muscle glycogen concentration.

Results—Dexamethasone treatment resulted in resting hyperinsulinemia and a significant decrease (70%) in glucose infusion rate during the EHC. In the dexamethasone group, increased hexokinase activity, abrogation of the insulin-stimulated increase in glycogen synthase fractional velocity, and decreased phosphorylation of GSK-3α Ser21 and GSK-3B Ser9 were detected, but there was no effect of dexamethasone treatment on glucose transporter 4 content and glycogen concentration or on PKB abundance and phosphorylation state.

Conclusions and Clinical Relevance—In horses, 21 days of dexamethasone treatment resulted in substantial insulin resistance and impaired GSK-3 phosphorylation in skeletal muscle, which may have contributed to the decreased glycogen synthase activity seen after insulin stimulation.

Abstract

Objective—To determine the effects of dexamethasone treatment on selected components of insulin signaling and glucose metabolism in skeletal muscle obtained from horses before and after administration of a euglycemic-hyperinsulinemic clamp (EHC).

Animals—6 adult Standardbreds.

Procedures—In a balanced crossover study, horses received either dexamethasone (0.08 mg/kg, IV, q 48 h) or an equivalent volume of saline (0.9% NaCl) solution, IV, for 21 days. A 2-hour EHC was administered for measurement of insulin sensitivity 1 day after treatment. Muscle biopsy specimens obtained before and after the EHC were analyzed for glucose transporter 4, protein kinase B (PKB), glycogen synthase kinase (GSK)-3α/β protein abundance and phosphorylation state (PKB Ser473 and GSK-3α/β Ser21/9), glycogen synthase and hexokinase enzyme activities, and muscle glycogen concentration.

Results—Dexamethasone treatment resulted in resting hyperinsulinemia and a significant decrease (70%) in glucose infusion rate during the EHC. In the dexamethasone group, increased hexokinase activity, abrogation of the insulin-stimulated increase in glycogen synthase fractional velocity, and decreased phosphorylation of GSK-3α Ser21 and GSK-3B Ser9 were detected, but there was no effect of dexamethasone treatment on glucose transporter 4 content and glycogen concentration or on PKB abundance and phosphorylation state.

Conclusions and Clinical Relevance—In horses, 21 days of dexamethasone treatment resulted in substantial insulin resistance and impaired GSK-3 phosphorylation in skeletal muscle, which may have contributed to the decreased glycogen synthase activity seen after insulin stimulation.

All Time Past Year Past 30 Days
Abstract Views 73 0 0
Full Text Views 10859 10276 72
PDF Downloads 353 202 31
Advertisement