• 1

    Baumann H, Gauldie J. The acute phase response. Immunol Today 1994;15:7480.

  • 2

    Petersen HH, Nielsen JP, Heegaard PMH. Application of acute phase measurements in veterinary clinical chemistry. Vet Res 2004;35:163187.

  • 3

    Suffredini AF, Fantuzzi G, Badolato R, et al. New insights into the biology of the acute phase response. J Clin Immunol 1999;19:203214.

  • 4

    Kushner I, Mackiewicz A. Acute phase proteins as disease markers. Dis Markers 1987;5:111.

  • 5

    Steel DM, Whitehead AS. The major acute phase reactants: C-reactive protein, serum amyloid P component and serum amyloid A protein. Immunol Today 1994;15:8188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Horadagoda NU, Knox KMG, Gibbs HA, et al. Acute phase proteins in cattle: discrimination between acute and chronic inflammation. Vet Rec 1999;144:437441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Petersen HH, Ersboll AK, Jensen CS, et al. Variation of serum haptoglobin concentration in slaughter pigs of different health status. Prev Vet Med 2002;54:325335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Francisco CJ, Shryock TR, Bane DP, et al. Serum haptoglobin concentration in growing swine after intranasal challenge with Bordetella bronchiseptica and toxigenic Pasteurella multocida type D. Can J Vet Res 1996;60:222227.

    • Search Google Scholar
    • Export Citation
  • 9

    Heegaard PMH, Klausen J, Nielsen JP, et al. The porcine acute phase response to infection with Actinobacillus pleuropneumoniae. Haptoglobin, C-reactive protein, major acute phase protein and serum amyloid A protein are sensitive indicators of infection. Comp Biochem Physiol B Biochem Mol Biol 1998;119:365373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Knura-Deszczk S, Lipperheide C, Petersen B, et al. Plasma haptoglobin concentration in swine after challenge with Streptococcus suis. J Vet Med B Infect Dis Vet Public Health 2002;49:240244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Lauritzen B, Lykkesfeldt J, Skaanild MT, et al. Putative biomarkers for evaluating antibiotic treatment: an experimental model of porcine Actinobacillus pleuropneumoniae infection. Res Vet Sci 2003;74:261270.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12

    Asai T, Mori M, Okada M, et al. Elevated serum haptoglobin in pigs infected with porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 1999;70:143148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Segalés J, Piñeiro C, Lampreave F, et al. Haptoglobin and pig-major acute protein are increased in pigs with postweaning multisystemic wasting syndrome (PMWS). Vet Res 2004;35:275282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14

    Dinarello CA. Interleukin-1 and its biologically related cytokines. Adv Immunol 1989;44:153205.

  • 15

    Sehgal PB, Grieninger G, Tosata G. Regulation of the acute phase and immune responses: interleukin-6. Ann N Y Acad Sci 1989;557:1583.

  • 16

    Van Miert A. Pro-inflamatory cytokines in a ruminant model: pathophysiological, pharmacological, and therapeutics aspects. Vet Q 1995;175:4150.

    • Search Google Scholar
    • Export Citation
  • 17

    Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990;265:621636.

  • 18

    Oldenburg HS, Rogy MA, Lazarus DD, et al. Cachexia and the acute-phase protein response in inflammation are regulated by interleukin-6. Eur J Immunol 1993;23:18891894.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Murtaugh MP, Baarsch MJ, Zhou Y, et al. Inflammatory cytokines in animal health and diseases. Vet Immunol Immunopathol 1996;54:4555.

  • 20

    Ingenbleek M, Young V. Transthyretin (prealbumin) in health and disease: nutritional implications. Annu Rev Nutr 1994;14:495533.

  • 21

    Le J, Vilcek J. Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab Invest 1987;56:234248.

    • Search Google Scholar
    • Export Citation
  • 22

    Yoshioka M, Mori Y, Miyazaki S, et al. Biological functions of recombinant bovine interleukin 6 expressed in a baculovirus system. Cytokine 1999;11:863868.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Knolle P, Lohr H, Treichel U, et al. Parenchymal and nonparenchymal liver cells and their interaction in the local immune response. Z Gastroenterol 1995;33:613620.

    • Search Google Scholar
    • Export Citation
  • 24

    Fauquet CM, Mayo MA, Maniloff J. Virus taxonomy. In:Fauquet CM, Mayo MA, Maniloff J, et al, eds.Classification and nomenclature of viruses: eighth report of the International Committee on Taxonomy of Viruses. San Diego: Academic Press Inc, 2005;135143, 981998.

    • Search Google Scholar
    • Export Citation
  • 25

    Gómez-Villamandos JC, Ruiz-Villamor E, Bautista MJ, et al. Morphological and immunohistochemical changes in splenic macrophages of pigs infected with classical swine fever. J Comp Pathol 2001;125:98109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Salguero FJ, Ruiz-Villamor E, Bautista MJ, et al. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Vet Immunol Immunopathol 2002;90:1122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Salguero FJ, Sánchez-Cordón PJ, Núñez A, et al.Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol 2005;132:289302.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Sánchez-Cordón PJ, Romanini S, Salguero FJ, et al. Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J Comp Pathol 2002;127:239248.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29

    Sánchez-Cordón PJ, Núñez A, Salguero FJ, et al. Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol 2005;42:477488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Wensvoort G, Tersptra C, DeKluijver EP, et al. Antigenic differentiation of pestivirus strain with monoclonal antibodies against hog cholera virus. Vet Microbiol 1989;21:920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Petersen HH, Nielsen JP, Jensen AL, et al. Evaluation of an enzyme-linked immunosorbent assay for determination of porcine haptoglobin. J Vet Med 2001;48:513523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Weidmeyer CE, Solter PF. Validation of human haptoglobin immunoturbidimetric detection of haptoglobin in equine and canine serum and plasma. Vet Clin Pathol 1996;25:141146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 1981;29:577580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Tecles F, Fuentes P, Martínez-Subiela S, et al. Analytical validation of commercially available methods for acute phase protein quantification in pigs. Res Vet Sci 2007;83:133193.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Eckersall PD, Saini PK, McComb C. The acute phase response of acid soluble glycoprotein, alfa(1)-acid glycoprotein, ceruloplasmin, haptoglobin and C-reactive protein in the pig. Vet Immunol Immunopathol 1996;51:377385.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Lampreave F, González-Ramón N, Martínez-Ayensa S, et al. Characterisation of the acute phase serum protein response in pigs. Electrophoresis 1994;15:672676.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Jacobson M, Lindberg JE, Lindberg R, et al. Intestinal cannulation: model for study of the midgut of the pig. Comp Med 2001;51:163170.

  • 38

    Sorensen NS, Tegtmeier C, Andresen LO, et al. The porcine acute phase protein response to acute clinical and subclinical experimental infection with Streptococcus suis. Vet Immunol Immunopathol 2006;113:157168.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340:448454.

  • 40

    Núñez A, Gómez-Villamandos JC, Sánchez-Cordón PJ, et al. Expression of proinflammatory cytokines by hepatic macrophages in acute classical swine fever. J Comp Pathol 2005;133:2332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Scamurra RW, Arriaga C, Sprunger L, et al. Regulation of IL-6 in porcine immune cells. J Interferon Cytokine Res 1996;16:289296.

  • 42

    Dowton SB, Colten HR. Acute phase reactants in inflammation and infection. Semin Hematol 1988;25:8490.

  • 43

    Ballou SP, Kushner I. C-reactive protein and the acute phase response. Adv Intern Med 1992;37:313336.

  • 44

    Cermak J, Key NS, Bach RR, et al. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood 1993;82:513520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Nakajima Y, Momotani E, Murakami T, et al. Induction of acute phase protein by recombinant human interleukin-6 (IL-6) in calves. Vet Immunol Immunopathol 1993;35:385391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Ramadori G, Christ B. Cytokines and the hepatic acute-phase response. Semin Liver Dis 1999;19:141155.

Advertisement

Serum concentrations of C-reactive protein, serum amyloid A, and haptoglobin in pigs inoculated with African swine fever or classical swine fever viruses

Pedro J. Sánchez-CordónDepartamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain
Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda Puerta de Hierro s/n, 28040, Madrid, Spain

Search for other papers by Pedro J. Sánchez-Cordón in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
José J. CerónDepartamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

Search for other papers by José J. Cerón in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Alejandro NúñezPathology Department, Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, KT15 3NB Surrey, England

Search for other papers by Alejandro Núñez in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Silvia Martínez-SubielaDepartamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain

Search for other papers by Silvia Martínez-Subiela in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
,
Miriam PedreraDepartamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain

Search for other papers by Miriam Pedrera in
Current site
Google Scholar
PubMed
Close
 DVM
,
José L. Romero-TrevejoDepartamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain

Search for other papers by José L. Romero-Trevejo in
Current site
Google Scholar
PubMed
Close
 DVM
,
María R. GarridoDepartamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain

Search for other papers by María R. Garrido in
Current site
Google Scholar
PubMed
Close
 DVM, PhD
, and
José C. Gómez-VillamandosDepartamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad de Córdoba, Edificio de Sanidad Animal, Campus de Rabanales, 14014, Córdoba, Spain

Search for other papers by José C. Gómez-Villamandos in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To determine serum concentrations of the selected acute-phase proteins (APPs) haptoglobin, serum amyloid A (SAA), and C-reactive protein (CRP) in pigs experimentally inoculated with classical swine fever (CSF) and African swine fever (ASF) viruses.

Animals—8 crossbred (Large White × Landrace) 10-week-old pigs.

Procedures—Pigs were allocated to 2 groups (4 pigs/group). One group was inoculated with the CSF virus Alfort 187 strain, whereas the other groupwas inoculated with the ASF virus Spain 70 isolate. Blood samples were collected at various time points. At the end of the study, pigs were euthanized and a complete necropsy was performed, including histologic and immunohistochemical analyses.

Results—Serum concentrations of APPs increased in pigs inoculated with CSF and ASF viruses, which suggested an acute-phase response in the course of both diseases. The most noticeable increase in concentration was recorded for SAA in both groups (up to a 300-fold increase for CSF virus and an approx 40-fold increase for ASF virus), followed by CRP and then haptoglobin, which each had only 3- to 4-fold increases.

Conclusions and Clinical Relevance—Serum concentrations of APPs increased significantly in pigs inoculated with CSF and ASF viruses. However, differences were evident in serum concentrations of the proteins evaluated in this study.

Abstract

Objective—To determine serum concentrations of the selected acute-phase proteins (APPs) haptoglobin, serum amyloid A (SAA), and C-reactive protein (CRP) in pigs experimentally inoculated with classical swine fever (CSF) and African swine fever (ASF) viruses.

Animals—8 crossbred (Large White × Landrace) 10-week-old pigs.

Procedures—Pigs were allocated to 2 groups (4 pigs/group). One group was inoculated with the CSF virus Alfort 187 strain, whereas the other groupwas inoculated with the ASF virus Spain 70 isolate. Blood samples were collected at various time points. At the end of the study, pigs were euthanized and a complete necropsy was performed, including histologic and immunohistochemical analyses.

Results—Serum concentrations of APPs increased in pigs inoculated with CSF and ASF viruses, which suggested an acute-phase response in the course of both diseases. The most noticeable increase in concentration was recorded for SAA in both groups (up to a 300-fold increase for CSF virus and an approx 40-fold increase for ASF virus), followed by CRP and then haptoglobin, which each had only 3- to 4-fold increases.

Conclusions and Clinical Relevance—Serum concentrations of APPs increased significantly in pigs inoculated with CSF and ASF viruses. However, differences were evident in serum concentrations of the proteins evaluated in this study.

Contributor Notes

Supported by grants from the Ministry of Education and Science (PB98-1033, AGL 2003-00252, and AGL 2003-01325) and the Seneca Foundation (PB/13/FS/02).

Dr. Sánchez-Cordón was supported by a contract from the Juan de la Cierva program (Ministry of Education and Science, Spain).

The authors thank M. C. Camacho for technical assistance.

Address correspondence to Dr. Sánchez-Cordón.