Effects of a magnesium adhesive cement on bone stability and healing following a metatarsal osteotomy in horses

Martin Waselau Comparative Orthopaedic Research Laboratories, Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210.

Search for other papers by Martin Waselau in
Current site
Google Scholar
PubMed
Close
 Dr med vet
,
Valerie F. Samii Comparative Orthopaedic Research Laboratories, Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210.

Search for other papers by Valerie F. Samii in
Current site
Google Scholar
PubMed
Close
 DVM
,
Steven E. Weisbrode Bone Pathology Laboratory, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210.

Search for other papers by Steven E. Weisbrode in
Current site
Google Scholar
PubMed
Close
 VMD, PhD
,
Alan S. Litsky Orthopaedic BioMaterials Laboratory, Department of Orthopaedics, College of Medicine and Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210.

Search for other papers by Alan S. Litsky in
Current site
Google Scholar
PubMed
Close
 MD, ScD
, and
Alicia L. Bertone Comparative Orthopaedic Research Laboratories, Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210.

Search for other papers by Alicia L. Bertone in
Current site
Google Scholar
PubMed
Close
 DVM, PhD

Abstract

Objective—To compare biodegradable magnesium phosphate cement (Mg-cement), calcium phosphate cement (Ca-cement), and no cement on bone repair, biocompatibility, and bone adhesive characteristics in vivo in horses.

Animals—8 clinically normal adulthorses.

Procedures—Triangular fragments (1-cm-long arms) were created by Y-shaped osteotomy of the second and fourth metatarsal bones (MTII and MTIV, respectively). Fragments were replaced in pairs to compare Mg-cement (MTII, n = 8; MTIV, 8) with Ca-cement (MTIV, 8) or with no cement (MTII, 8). Clinical and radiographic evaluations were performed for 7 weeks, at which time osteotomy sites were harvested for computed tomographic measurement of bone density and callus amount, 3-point mechanical testing, and histologic evaluation of healing pattern and biodegradation.

Results—All horses tolerated the procedure without clinical problems. Radiographically, Mg-cement secured fragments significantly closer to parent bone, compared with Ca-cement or no treatment. Callus amount and bone remodeling and healing were significantly greater with Mg-cement, compared with Ca-cement or no cement. Biomechanical testing results and callus density among treatments were not significantly different. Significantly greater woven bone was observed adjacent to the Mg-cement without foreign body reac-tion, compared with Ca-cement or no cement. The Mg-cement was not fully degraded and was still adhered to the fragment.

Conclusions and Clinical Relevance—Both bone cements were biocompatible in horses, and Mg-cementmay assistfracture repair by osteogenesis and fragmentstabilization. Fur ther studies are warranted on other applications and to define degradation characteristics.

Abstract

Objective—To compare biodegradable magnesium phosphate cement (Mg-cement), calcium phosphate cement (Ca-cement), and no cement on bone repair, biocompatibility, and bone adhesive characteristics in vivo in horses.

Animals—8 clinically normal adulthorses.

Procedures—Triangular fragments (1-cm-long arms) were created by Y-shaped osteotomy of the second and fourth metatarsal bones (MTII and MTIV, respectively). Fragments were replaced in pairs to compare Mg-cement (MTII, n = 8; MTIV, 8) with Ca-cement (MTIV, 8) or with no cement (MTII, 8). Clinical and radiographic evaluations were performed for 7 weeks, at which time osteotomy sites were harvested for computed tomographic measurement of bone density and callus amount, 3-point mechanical testing, and histologic evaluation of healing pattern and biodegradation.

Results—All horses tolerated the procedure without clinical problems. Radiographically, Mg-cement secured fragments significantly closer to parent bone, compared with Ca-cement or no treatment. Callus amount and bone remodeling and healing were significantly greater with Mg-cement, compared with Ca-cement or no cement. Biomechanical testing results and callus density among treatments were not significantly different. Significantly greater woven bone was observed adjacent to the Mg-cement without foreign body reac-tion, compared with Ca-cement or no cement. The Mg-cement was not fully degraded and was still adhered to the fragment.

Conclusions and Clinical Relevance—Both bone cements were biocompatible in horses, and Mg-cementmay assistfracture repair by osteogenesis and fragmentstabilization. Fur ther studies are warranted on other applications and to define degradation characteristics.

  • 1

    Auer JA. Principles of fracture treatment. In:Auer JA, Stick JA, ed.Equine surgery. 3rd ed. Philadelphia: Saunders Elsevier, 2006;10001029.

    • Search Google Scholar
    • Export Citation
  • 2

    Markel MD, Lopez MJ. Bone biology and fracture healing. In:Auer JA, Stick JA, ed.Equine surgery. 3rd ed. Philadelphia: Saunders Elsevier, 2006;9911000.

    • Search Google Scholar
    • Export Citation
  • 3

    Rahn BA. Bone healing: histologic and physiologic concepts. In:Sumner-Smith G, ed.Bone in clinical orthopedics. 2nd ed. Stuttgart, Germany: Thieme Verlag, 2002;287325.

    • Search Google Scholar
    • Export Citation
  • 4

    Miller ME, Ada JR, Webb LX. Treatment of infected nonunion and delayed union of tibia fractures with locking intramedullary nails. Clin Orthop Relat Res 1989;233238.

    • Search Google Scholar
    • Export Citation
  • 5

    Macey LR, Kana SM, Jingushi S, et al. Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am 1989;71:722733.

  • 6

    Castillo RC, Bosse MJ, MacKenzie EJ, et al. Impact of smoking on fracture healing and risk of complications in limbthreatening open tibia fractures. J Orthop Trauma 2005;19:151157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Nunamaker DM. Basic principles of fracture treatment. In:Fackelman GE, Auer JA, Nunamaker DM, ed.AO principles of equine osteosynthesis. Stuttgart, New York: Thieme Verlag, 1999;59.

    • Search Google Scholar
    • Export Citation
  • 8

    Nixon AJ. Principles of fracture fixation. In:Nixon AJ, ed.Equine fracture repair. Philadelphia: Saunders Elsevier, 1996;6386.

  • 9

    Schatzker J. AO philosophy and principles. In:Rüedi TP, Murphy WM, ed.AO principles of fracture management. New York: Thieme Verlag, 2000;14.

    • Search Google Scholar
    • Export Citation
  • 10

    Fox S. Cancellous bone grafting in the dog: an overview. J Am Anim Hosp Assoc 1984;20:840848.

  • 11

    Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000;1027.

  • 12

    Hulse D. Pathophysiology of autologous cancellous bone grafts. Compend Contin Educ Pract Vet 1980;136142.

  • 13

    Johnson AL. Principles of bone grafting. Semin Vet Med Surg (Small Anim) 1991;6:9099.

  • 14

    Olds R. Autogenous cancellous bone grafting in small animals. J Am Anim Hosp Assoc 1973;9:454457.

  • 15

    Boyce T, Edwards J, Scarborough N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 1999;30:571581.

    • Search Google Scholar
    • Export Citation
  • 16

    Muschler GF, Negami S, Hyodo A, et al. Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin Orthop Relat Res 1996;250260.

    • Search Google Scholar
    • Export Citation
  • 17

    Wimmer C, Krismer M, Gluch H, et al. Autogenic versus allogenic bone grafts in anterior lumbar interbody fusion. Clin Orthop Relat Res 1999;122126.

    • Search Google Scholar
    • Export Citation
  • 18

    Merkx MA, Maltha JC, Freihofer HP, et al. Incorporation of three types of bone block implants in the facial skeleton. Biomaterials 1999;20:639645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19

    Biddulph SL. Bone donor site. Iliac crest or distal radius? J Hand Surg (Br) 1999;24:645646.

  • 20

    Lu J, Descamps M, Dejou J, et al. The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 2002;63:408412.

  • 21

    Miyamoto Y, Ishikawa K, Takechi M, et al. Histological and compositional evaluations of three types of calcium phosphate cements when implanted in subcutaneous tissue immediately after mixing. J Biomed Mater Res 1999;48:3642.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22

    Ohura K, Bohner M, Hardouin P, et al. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 1996;30:193200.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Ooms EM, Egglezos EA, Wolke JG, et al. Soft-tissue response to injectable calcium phosphate cements. Biomaterials 2003;24:749757.

  • 24

    Ooms EM, Wolke JG, van de Heuvel MT, et al. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 2003;24:9891000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25

    Ooms EM, Wolke JG, van der Waerden JP, et al. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 2002;61:918.

  • 26

    Knaack D, Goad ME, Aiolova M, et al. Resorbable calcium phosphate bone substitute. J Biomed Mater Res 1998;43:399409.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Gauthier O, Muller R, von Stechow D, et al. In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 2005;26:54445453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 1988;232:127138.

    • Search Google Scholar
    • Export Citation
  • 29

    Constantz BR, Ison IC, Fulmer MT, et al. Skeletal repair by in situ formation of the mineral phase of bone. Science 1995;267:17961799.

  • 30

    Hillmeier J, Meeder PJ, Noldge G, et al. Balloon kyphoplasty of vertebral compression fractures with a new calcium phosphate cement. Orthopäde 2004;33:3139.

    • Search Google Scholar
    • Export Citation
  • 31

    Claes L, Hoellen I, Ignatius A. Resorbable bone cements. Orthopäde 1997;26:459462.

  • 32

    Goodman SB, Bauer TW, Carter D, et al. Norian SRS cement augmentation in hip fracture treatment. Laboratory and initial clinical results. Clin Orthop Relat Res 1998;4250.

    • Search Google Scholar
    • Export Citation
  • 33

    Wolfe SW, Pike L, Slade JF III, et al. Augmentation of distal radius fracture fixation with coralline hydroxyapatite bone graft substitute. J Hand Surg (Am) 1999;24:816827.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Kopylov P, Jonsson K, Thorngren KG, et al. Injectable calcium phosphate in the treatment of distal radial fractures. J Hand Surg (Br) 1996;21:768771.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35

    Jubel A, Andermahr J, Mairhofer J, et al. Use of the injectable bone cement Norian SRS for tibial plateau fractures. Results of a prospective 30-month follow-up study. Orthopäde 2004;33:919927.

    • Search Google Scholar
    • Export Citation
  • 36

    Cassidy C, Jupiter JB, Cohen M, et al. Norian SRS cement compared with conventional fixation in distal radial fractures. A randomized study. J Bone Joint Surg Am 2003;85-A:21272137.

    • Search Google Scholar
    • Export Citation
  • 37

    Mahr MA, Bartley GB, Bite U, et al. Norian craniofacial repair system bone cement for the repair of craniofacial skeletal defects. Ophthalmol Plast Reconstr Surg 2000;16:393398.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Lotz JC, Hu SS, Chiu DF, et al. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine. Spine 1997;22:27162723.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Mathias P, Bostrom M. Future directions: augmentation of osteoporotic vertebral bodies. Spine 1997;22:3842.

  • 40

    Apelt D, Theiss F, El-Warrak AO, et al. In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 2004;25:14391451.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Theiss F, Apelt D, Brand B, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 2005;26:43834394.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42

    Perry A, Mahar A, Massie J, et al. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. Spine J 2005;5:489493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Rohmiller MT, Schwalm D, Glattes RC, et al. Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J 2002;2:255260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Costantino PD, Friedman CD, Jones K, et al. Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch Otolaryngol Head Neck Surg 1991;117:379384.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45

    Friedman CD, Costantino PD, Jones K, et al. Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 1991;117:385389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Friedman CD, Costantino PD, Takagi S, et al. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J Biomed Mater Res 1998;43:428432.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47

    Guo D, Xu K, Zhao X, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005;26:40734083.

  • 48

    Roy DM, Linnehan SK. Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature 1974;247:220222.

  • 49

    Yuan H, Li Y, de Bruijn JD, et al. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials 2000;21:12831290.

  • 50

    Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000;31 (suppl 4):3747.

  • 51

    Bohner M, Baroud G. Injectability of calcium phosphate pastes. Biomaterials 2005;26:15531563.

  • 52

    Frayssinet P, Roudier M, Lerch A, et al. Tissue reaction against a self-setting calcium phosphate cement set in bone or outside the organism. J Mater Sci Mater Med 2000;11:811815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53

    Seeherman H, Li R, Wozney J. A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Joint Surg Am 2003;85-A (suppl 3):96108.

    • Search Google Scholar
    • Export Citation
  • 54

    Fukase Y, Eanes ED, Takagi S, et al. Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res 1990;69:18521856.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55

    Heiss C, Schnettler R. Bioresorbable bone adhesives: historical perspective and state of the art. Unfallchirurg 2005;108:348355.

  • 56

    Donkerwolcke M, Burny F, Muster D. Tissues and bone adhesives-historical aspects. Biomaterials 1998;19:14611466.

  • 57

    Rimpler M. Leistungsfähigkeit der modernen Klebetechnik, in Proceedings. 8. Internationales Symposium Swissbonding, 1994;S161S166.

  • 58

    Schnabelrauch M, Vogt S. Werkstoffe für die Medizintechnik. In:Planck H, Stallforth H, ed.Werkstoffwoche 98. Weinheim, Germany: Wiley VCH, 1999;S161S166.

    • Search Google Scholar
    • Export Citation
  • 59

    Wenz R. First results with a bioresorbable bone glue. In:Walenkamp G, ed.Biomaterials in surgery. New York: Thieme Medical Publishers, 1998;132135.

    • Search Google Scholar
    • Export Citation
  • 60

    Heiss C, Hahn N, Wenisch S, et al. The tissue response to an alkylene bis(dilactoyl)-methacrylate bone adhesive. Biomaterials 2005;26:13891396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Heiss C, Hahn N, Pokinskyj P, et al. Properties and degradation of a new bioresorbable bone glue. Biomed Tech (Berl) 2004;49:163169.

  • 62

    Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 2006;27:17281734.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63

    Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 2006;27:10131018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64

    Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 2005;26:35573563.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65

    Cann CE. Quantitative CT for determination of bone mineral density: a review. Radiology 1988;166:509522.

  • 66

    Chen X, Lam YM. Technical note: CT determination of the mineral density of dry bone specimens using the dipotassium phosphate phantom. Am J Phys Anthropol 1997;103:557560.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67

    Less CM, Keyak SM, Stover SM. Estimation of material properties in the equine metacarpus with the use of quantitative computed tomography. J Orthop Res 1994;12:822833.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68

    McBride ED. Absorbable metal in bone surgery. J Am Vet Med Assoc 1938;111:24642467.

  • 69

    Collier MA, Brighton CT, Norrdin R, et al. Direct current stimulation of bone production in the horse: preliminary study with a “gap healing” model. Am J Vet Res 1985;46:610621.

    • Search Google Scholar
    • Export Citation
  • 70

    Ishikawa K. Effects of spherical tetracalcium phosphate on injectability and basic properties of adaptic cement. Key Eng Mater 2003;240–242:369372.

    • Search Google Scholar
    • Export Citation
  • 71

    Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 2002;62:175184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Yamasaki Y, Yoshida Y, Okazaki M, et al. Action of FGMgCO3Apcollagen composite in promoting bone formation. Biomaterials 2003;24:49134920.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73

    Yamasaki Y, Yoshida Y, Okazaki M, et al. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 2002;62:99105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74

    Schatzker J. Principles of internal fixation. In:Schatzker J, Tile M, ed.The rationale of operative fracture care. 3rd ed. Berlin: Springer-Verlag, 2005;1032.

    • Search Google Scholar
    • Export Citation
  • 75

    Bertone AL, Pittman DD, Bouxsein ML, et al. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J Orthop Res 2004;22:12611270.

    • Crossref
    • Search Google Scholar
    • Export Citation

Advertisement